
Tariq El-Jumaily 2024 A-Level Computer Science
Coursework

Table of contents
Tariq El-Jumaily 2024 A-Level Computer Science Coursework.. 1
Analysis.. 4

Problem Description... 4
Stakeholders.. 5
Why can the problem be solved by computational methods..6
Research.. 13
Features of the proposed solution..29
Software and hardware requirements.. 31
Success criteria.. 33

Design... 35
Overview of the system (top-down design/systems diagram).. 35

Section 1:... 36
Section 2:... 37
Section 3:... 37

Module Descriptions...38
AI input... 38
AI Process.. 38
AI Output.. 38
UI Output.. 39
Buttons/UI...39
AI Image Captioning...40

Proposed Screen Designs and usability features...41
Design style..41
Font.. 41
Colours... 41
Main menu..42
Emotion Detection Scene...44
Object Classification Scene..44
Settings Page... 46

Useability Features...48
Effectiveness.. 48
Efficient...49
Engaging.. 50
Error-Tolerant... 51
Easy to Learn... 52

Algorithm Designs.. 53

1

Algorithm Validation..68
Internet connection validation...68
Touchscreen input validation.. 69
Image caption validation...69

Iterative Development Test Data.. 70
Iteration 1... 70
Iteration 2... 73
Iteration 3... 75

Post Development Test Data..77
Useability Testing Plan... 86

Iterative Development..87
Iteration 1 - Date 25/07/2023..88

Aims for this iteration..88
Summary of aims:...89

Functionality that the prototype will have:.. 90
Annotated code screenshots with description.. 91
Test Plan for this version.. 103
Test Results / Evidence.. 105
Feedback from Stakeholder... 110
Changes/Fixes that I now plan to make..111
Evaluation...112

Iteration 2 - Date 03/10/2023..113
Aims for this iteration.. 113

Bug Fixing:..114
Summary of aims:...116

Annotated code screenshots with description.. 117
Test Plan for this version.. 175
Test Results / Evidence.. 177
Feedback from Stakeholder... 187
Changes/Fixes that I now plan to make... 189
Evaluation...189

Iteration 3 - Date 03/10/2023..190
Aims for this iteration..190

Bug Fixing:..191
Summary of aims:...193

Annotated code screenshots with description.. 194
Test Plan for this version.. 218
Test Results / Evidence.. 220
Feedback from Stakeholder... 225
Evaluation...228

Final Evaluation..229
Final Testing Evidence: Functionality and Robustness.. 229

Post Development testing plan...229
Extra Tests (Post Development Testing).. 251

2

Robustness.. 254
Useability Testing... 255

Menu and UI... 255
App Functionality and Features..258
Review on useability...263

Evaluating Each Success Criteria.. 264
Limitations and Maintenance..270

Limitations.. 270
Maintenance... 272

Final Evaluation..274
Appendices...275

Code Listing... 275
EmotionDetectionScript.cs... 275
Yolo.cs.. 278
sendScreenshot.cs...281
SceneSwitch.cs.. 283
Model2.py...284
Note..285

Screencast... 286

3

Analysis

Problem Description

For my project, I will create an augmented reality interactive mobile application that will be
composed of an attractive user interface. The main screen will show the mobile phone
reverse camera that displays the user's surroundings. The aim is to create an “all-in-one”
tool that can assist people with visual impairments. The user will point the camera at a
particular person and the program would be able to identify and output a guess of the
surroundings and mood, based on facial expressions. There will also be an option to read
this out so that the user can perhaps get a better mental visualisation for if their sight is not
very capable of seeing the screen. Furthermore, the program can prompt the user to take a
picture and create a basic caption of the image’s description which can also be read out via
a text-to-speech interface for the user.

For the user interface and style, I will use an open source library of pre-designed buttons
and text fonts which will create an attractive display, similar perhaps, to the style of
minimalist apps and operating systems such as, Uber, and iOS. Since I lack previous
expertise in UI design, this allows me to spend less time designing assets, which will be
beneficial in terms of time costs.

Many current, similar systems often make use of a pre-trained or custom-trained neural
network to identify patterns and recognition between various states of emotion and
character. Some algorithms identify facial features such as eye positions and wrinkle
patterns, alongside the mouth and eyebrow shape to almost ‘piece together’ a particular
mood. E.g. an image of a human with squinted eyes, raised eyebrows, and upwards curved
mouth, with side eye wrinkles would indicate a common combination of a possible ‘happy’
mood. Another example would be the combination of a human with thinner lips, higher
cheekbones, and smoother skin complexion would indicate a possible female. While
developing my system, accuracy and responsiveness would be a high priority in order to
provide a highly interactive and usable experience.

One popular option that can be used to identify a face, facial expressions, age and gender, is
OpenCV's DNN module or DeepFace, which support various pre-trained models. For mood
estimation, I can use a pre-trained model like FER2013 (Facial Expression Recognition).
And to caption the image I will also need to use another pre-trained AI model, this can be
one such as the show-and-tell model, which is based on a neural network architecture that
combines a CNN (Convolutional Neural Network) for image feature extraction and an LSTM
(Long Short-Term Memory) for generating captions.

Overall, the user may not have much experience with technology, consequently, the interface
should be overall simple and straightforward.

4

Stakeholders

This project targets a broad audience of mobile app users, particularly those who have an
interest in augmented reality (AR) and artificial intelligence (AI). The application will feature a
user-friendly interface that allows users to interact with AI technology in a simple, fun, and
engaging way. This makes it suitable for all, irrespective of their knowledge level in AI and
AR.

My primary target demographic is individuals who are tech-savvy and curious about
innovations in AI and AR while also considering those who might find practical use-cases for
the application, such as educators teaching AI, those who may benefit from the application
(perhaps those with visual impairments), or researchers studying human interaction with
technology.

My app aims to bridge the gap between sophisticated AI technologies and everyday
smartphone users. It leverages AR technology to create an interactive experience, making
use of AI to analyse and interpret facial features and expressions, and subsequently, display
information about the person's environment and mood.

The application will use intuitive touchscreen controls and simple user interface elements,
making it accessible to a wide range of users, including those who may not be familiar with
advanced technologies, such as perhaps elderly people. Moreover, given that the app is
developed for mobile platforms, it will cater to a substantial number of smartphone users
around the world.

I have identified three specific stakeholders to gain valuable feedback throughout the
development process. They include a 48-year-old software developer, Aiad Tarik, who
regularly interacts with cutting-edge technology and could provide insights on the app's
performance and usability. A 17-year-old student, Mario Prifti, who has a curious insight into
developing technologies, along with a heavily creative mind, which would help me tackle the
issue of making the project engaging and interesting to people of all ages. Finally, a
75-year-old retired farmer, Mike Parish, who could provide valuable insights on the
functionality of the technology, since he is not as tech-confident and his insight would help
me develop my app to be usable for those of every background.

5

Why can the problem be solved by computational methods

Abstraction and visualisation
For my project, I'm going to use abstraction in a variety of ways to shave off redundant
information and make my problem simpler. To make the user's experience with the app
better, the use of abstraction will also conceal potentially confusing details from them.

Ways I will use abstraction and visualisation:

- Clear and simplified graphics:
- A bounding box around the user’s face will clearly define their position and

identify their name just outside of the box, making it easier and clearer for the
user to see and visually process

- Minimalistic and direct UI
- Simple, and minimalistic UI is going to be used to prevent confusion for users,

especially those who are not confident in using technology

- Accessibility options:
- Text-To-Speech capability will be implemented in order to reduce the amount

of information on screen, which can be overwhelming for some, and useful for
those who have visual problems.

6

Thinking Ahead

The prerequisites, inputs, outputs, and reusable components of my project will all be
established before I begin to apply the principle of forward computation to it. This is
important because, before I begin writing scripts, I need to have a complete understanding of
all the anticipated inputs and outputs. Recognising the prerequisites for any operations that
will be carried out is also crucial.

I've listed all the app's necessary inputs, outputs, and additional prerequisites in the sections
below:

- Inputs:
- Laptop webcam
- Phone Camera (front/back)
- Target image (for recognition)
- Pixel size of image/video feed
- Colour format of inputted image/video feed
- UI button for text-to-speech functionality
- UI button for image captioning functionality

- Outputs:
- Bounding box around face
- Name of person (text)
- Emotion of person (text)
- Spoken (audio) text-to-speech
- Image caption (text)

- Additional Prerequisites (for development)
- DeepFace library
- OpenCV library
- Unity library
- FER2013 training data

- Additional Prerequisites (for user)
- Device with internet connection (needed to download model weights files

locally)
- Device with working camera
- Device with working speaker
- Higher performance devices will produce more accurate results faster
- 4-8GB memory in order to keep up with heavy duty of facial recognition

7

Thinking Procedurally

I should deconstruct my problem into more manageable subproblems that can be coded
independently in order to implement a procedural approach to my development. This would
enable me to modularize my code, which will aid in testing and debugging and cut down on
the amount of time it takes to develop new components

The program can be divided into numerous subsections, such as image input, which can be
further divided into image processing, which is further divided into resizing, colouring, and
normalisation. This will lead to the creation of unique functions that, provided they have the
right parameters for the particular application, only need to be coded once and can be used
repeatedly throughout the entire system.

These functions, characterised by their reusable nature, serve as the bedrock of our
procedural approach. By ensuring that they are well-parameterized and suited to the specific
task at hand, we can significantly decrease the necessity of repetitive code, enhancing the
overall efficiency of the system. Code reuse not only reduces the time spent on
development, but it also diminishes the chances of errors creeping into the system.

8

Modular breakdown of the program:

Overview:

Section 1 & 2:

9

Section 3 & 4:

10

Section 5 & 6:

11

Thinking Logically

It is essential to approach problem-solving from a logical perspective. This logical thinking, in
a programming context, refers to the identification of decision points within the program that
can cause it to branch off or repeat certain processes based on specific conditions. These
decision points essentially steer the flow of the program, allowing it to adapt and respond to
different scenarios.

- Logical Flow in Facial Recognition:
- For instance, the facial recognition feature in the proposed application serves as an

excellent case study of logical thinking in action. When the user points the camera at
a person, the program needs to analyze the image and make decisions based on
what it detects. The first decision point might involve determining whether a face is
present in the image or not. If a face is detected, the program branches off to identify
the person's mood based on their facial features. Each of these attributes requires its
own set of decision points. For example, the determination of mood could branch off
into various emotions like happiness, sadness, anger, or surprise, each identified by
distinctive facial cues.

- Incorporating User-Interactive Decision Points:
- Incorporating decision points that involve user interaction is another significant

aspect of logical thinking. In the proposed application, users can opt for an audio
description of the identified facial features. This introduces another decision point
where the program must decide whether to output the results through text or convert
the text to speech based on the user's preference.

- Caption Generation and Logical Decisions:
- The caption generation feature introduces yet another realm of decision-making.

Upon taking a picture, the program must logically dissect the image contents and
compose a suitable caption. The decision points here may involve determining the
number of objects in the image, identifying the objects, and generating a
grammatically correct and contextually relevant caption.

- Error Handling and Logic:
- Finally, logical thinking is vital in error handling. Decision points must be included to

detect potential issues such as poor lighting or obstructed views that could interfere
with image processing. Upon encountering such issues, the program can decide to
request the user to retake the image or adjust their position, thereby ensuring optimal
operation.

12

Research

MorphCast Emotion AI

MorphCast is a tech company offering advanced solutions in the field of facial recognition
and facial feature detection technologies. Their primary product is client side emotion AI
software, which allows developers to integrate facial recognition capabilities into their
applications.

MorphCast Emotion AI Description
https://www.morphcast.com/

The company also offers an array of APIs for web and mobile platforms that allow computers
to recognise, understand, and imitate human emotions. A subset of emotion AI called facial
emotion recognition (FER) aims to identify emotions from facial expressions. Based on the
recognition of users' moods, sentiments, or emotions as expressed in their facial
expressions, MorphCast Emotion AI can be used to create software applications and
services that engage with users in a more human and natural way.

Like most other similar solutions, MorphCast uses convolutional neural networks (CNN) to
extract and identify particular facial expressions and features by learning and identifying
patterns in large, labelled datasets. This training can take a massive amount of
computational power and time but the end result is a working ‘model’ that can be lightweight
and used from a variety of different devices and operating systems to make predictions on
new and unseen data

13

Personal review:
The way the objects detected are displayed to the user is a crucial component of MorphCast,
which I will implement in my facial recognition system. Due to the stark contrast between the
coloured facial bound-boxes and the rest of the image's colours, the face is fairly obvious.
This would be helpful because users who need to be able to clearly identify a person in the
footage, such as those with visual impairment or poor eyesight, will need to be able to do so.

Additionally, the status bars at the bottom make it easy to determine a person's status and to
visually combine various emotions. However, since it is extremely complicated and
mathematical and not something I could realistically produce, I will not be using the same
approach to identify multiple emotions.

A demonstration of the MorphCast emotion AI Tool recognising visible
‘Happy’ emotions

Another demonstration of MorphCast, detecting a visible ‘neutral’ emotion, along with age and
gender estimation

One major limitation of MorphCast is its web-based functionality. I am to make my project
application-based, with all the processing happening locally, on-system, although I
understand that this may be difficult and could be outside the time scope of the project,
especially with limitations such as device performance, which means I may have to process
the AI images over a server/network such as python flask.

14

Visage Technologies

Visage Technologies is a leading tech firm specialising in face tracking, analysis, and
recognition solutions. They deliver innovative software for developers, focusing on
their primary product - an advanced AI-driven facial recognition system. This
cutting-edge technology provides developers with the capacity to seamlessly
incorporate face tracking and analysis functionalities into their applications.

Visage technologies company description
https://visagetechnologies.com/about/

Personal review:
The way emotion and age are detected and displayed to the user is a key defining factor for
Visage Technologies, which I will implement in my facial recognition system - this includes
the text box for the age and gender close to their face. The face tracking nodes and
wireframe allows the face to be obviously seen. This would be helpful because users who
need to be able to clearly identify a person in the footage, such as those with visual
impairment or poor eyesight, will need to be able to do so.

In regards to the wireframe and tracking points, since it is extremely complicated and
mathematical it would not be something I could realistically produce, I will not be using the
same approach to track the face, but rather utilise a basic bounding box around the face.

15

Detecting my face as “Surprised” and a 27-year-old male

Detecting my face as a “happy” 27-year-old male (wireframe off)

16

DeepFace

Facebook's research team has developed an advanced facial recognition library called
DeepFace, capable of accurately identifying human faces in digital photos. This powerful
library incorporates several external face recognition models, including VGG-Face, Facenet,
OpenFace, DeepID, ArcFace, Dlib, and SFace. Unlike most other facial recognition and
analysis software, which average accuracies of around 80%, DeepFace boasts an
impressive accuracy rate of 97.25%.

DeepFace's success can be attributed to its utilisation of a sophisticated nine-layer neural
network comprising over 120 million link weights. This neural network is designed as a
siamese network, enabling it to effectively recognize faces stored in a database. The
immense accuracy of DeepFace highlights its exceptional performance in the field of facial
recognition technology.

Deepface demo identifying person as “Elisabeth”, including a bounding box and
gender/mood estimation, all processed in real-time through a constant stream of

video images
https://github.com/serengil/deepface

A Siamese Neural Network is a form of artificial intelligence model that can learn to
distinguish between two inputs, to put it simply. Consider it as a pair of identical twins who
have the same upbringing (corresponding to the same weights and architecture in neural
network terminology) and have extremely similar worldviews.

They utilise their common knowledge to assess how similar or unlike two distinct objects are
when they are provided to consider. They may not always recognise the items, but they are
able to determine how similar or unlike they are based on their "learned upbringing."

When doing jobs like face recognition or signature verification, where you must compare a
new signature to an old one, this type of network is extremely helpful. It all comes down to
determining how similar or different two sets of data are, or in this case, if a person in an

17

https://github.com/serengil/deepface

image matches a person saved in a database, critical for advanced recognition and
differentiation.

Deepface may be used to stream live videos as well. The Stream feature will access your
webcam and do both facial attribute analysis and face recognition. If the function can
concentrate a face sequentially over five frames, analysis of the frame will begin. Results are
displayed five seconds later.

Deepface additionally offers an api, which can be used and implemented with an application
- this means that image processing and analysis can be done externally at a relatively low
cost and high bandwidth - this eliminates the need of optimising a pre-trained model, which
can come with drawbacks, such as reduced accuracy and increased chance of error e.g. not
detecting a face in the picture.

18

Interviews

Plan:

I have chosen to formulate a comprehensive questionnaire to maximise the effectiveness of
my interviews. To optimise the interview process and utilise my time efficiently, I categorised
the questions into various sections, namely:

● General Controls/Usability
● Accuracy
● Personal Use
● Text-To-Speech

These categories served as a framework for planning the interviews, ensuring that I could
extract the most valuable information from each stakeholder. In the upcoming discussions, I
will engage with the three stakeholders mentioned earlier, namely Aiad, Mario, and Mike. To
maintain clarity and organisation, Aiad's responses will be denoted in red, Mario's responses
in green, and Mike's responses in blue.

Open questions will be denoted by an (O) and closed questions will be denoted by a (C).

General Controls/Useability:
1) (O) Can you describe the features of an ideal user interface for an AI and AR mobile

app from your perspective?
2) (C) Do you prefer a minimalist design with fewer on-screen controls and more

reliance on gestures or a more comprehensive design with on-screen controls for
every function?

3) (O) If the app were to include a help or tutorial section, what essential elements
should it contain to assist you in understanding the app's functionality?

4) (O) Based on your experience with mobile apps, what common features or controls
do you think should be incorporated into this app to enhance its usability?

5) (C) Would you prefer the app to provide haptic feedback (e.g., vibration) as a form of
interaction or confirmation of certain actions?

Accuracy:
1) (O) What would your expectations be regarding the accuracy of the app's AI in

determining environments and mood from facial expressions?
2) (O) In an ideal scenario, how do you believe the app should handle uncertainties or

ambiguities (for example, when the AI can't confidently determine a person's mood)?
3) (C) Do you believe a confidence percentage indicating the AI's certainty of its

assessment (e.g., 85% confidence that the person is happy) would be helpful?

19

Personal Use:
1) (O) Can you describe a scenario where you would find this app most useful in your

daily life?
2) (C) Do you anticipate using this app frequently, for example, daily, weekly, or only for

special occasions?
3) (O) What specific features or functionalities would you want this app to have to best

suit your personal needs and preferences?

Text-to-speech functionality:
1) (C) Would you prefer the option to adjust the speed and pitch of the text-to-speech

feature to accommodate your listening comfort?
2) (O) In what situations do you think using a text-to-speech feature could be most

beneficial for you or other users of the app?

20

Interview Summary:
1.1) (O) Can you describe the features of an ideal user interface for an AI and AR
mobile app from your perspective?

Aiad:
An ideal user interface for an AI and AR mobile app, from my perspective, should be
minimalist yet effective. It should include clear labels for all functions, intuitive touch
gestures, and easy navigation. It should also be visually appealing, utilising a harmonious
colour scheme and easy-to-read text.

Mario:
From my perspective, the perfect user interface for an AI and AR mobile application should
be modern and aesthetically appealing. It should include easily distinguishable icons and a
colour scheme that makes the interface enjoyable to use, and also guides the user naturally
through the functions of the app.

Mike:
For me, the ideal interface for this kind of application would be simple and straightforward,
with large, easy-to-read text and clear, identifiable icons. The functions of different buttons
and options should be immediately clear, and there should not be too many options on the
screen at once to avoid confusion.

1.2) (C) Do you prefer a minimalist design with fewer on-screen controls and more
reliance on gestures or a more comprehensive design with on-screen controls for
every function?

Aiad:
I prefer a minimalist design with fewer on-screen controls and more reliance on gestures.
This makes for a less cluttered screen, improving the overall user experience. I believe in the
power of gestures and think that they can provide a more immersive and engaging user
experience.

Mario:
Personally, I appreciate on-screen controls for precise actions, but I'm also comfortable with
gesture controls. Gestures can make the interaction smoother and faster, and they seem
more futuristic, which I find really cool!

Mike:
At my age, gesture controls might be a bit difficult to master. I prefer on-screen buttons as
they give me more certainty in what I'm doing.

21

1.3) (O) If the app were to include a help or tutorial section, what essential elements
should it contain to assist you in understanding the app's functionality?

Aiad:
If the app were to include a help or tutorial section, it should contain step-by-step guides on
how to use the app's features. Visual aids, like screenshots or short video clips, would be
very beneficial. There should also be a troubleshooting section to help users resolve
common problems.

Mario:
I believe a tutorial is essential for any application, especially for those involving complex
technologies like AI and AR. A tutorial that walks me through each feature of the app with
practical examples would be beneficial. It should be interactive and dynamic, allowing me to
actually try the features as I learn about them.

Mike:
Yes, I believe a tutorial would be quite necessary for me. It should explain each feature
clearly and provide instructions on how to navigate the app. The tutorial should be
interactive, allowing me to practice using the app as I learn.

1.4) (O) Based on your experience with mobile apps, what common features or
controls do you think should be incorporated into this app to enhance its usability?

Aiad:
Based on my experience with mobile apps, I think common features that enhance usability
include a search function, customizable settings, and feedback options. Also, gesture
controls such as pinch to zoom, swipe to navigate, and long press for more options are
handy and intuitive.

Mario:
Some features I consider essential for improving usability are a clean and intuitive layout,
responsive design, and efficient loading times. I also appreciate when an app allows for
personal customization, like changing themes or adjusting settings to suit my preferences.

Mike:
For me, larger buttons and text, a clean and uncluttered interface, and easily identifiable
icons are important for usability. In addition, the app should respond quickly and not lag or
freeze.

22

1.5) (C) Would you prefer the app to provide haptic feedback (e.g., vibration) as a form
of interaction or confirmation of certain actions?

Aiad:
Yes, I believe haptic feedback can be very useful in providing non-visual cues to users. For
example, vibrations could indicate a successful action, like taking a picture, or alert users to
an error. This form of interaction can greatly enhance the user experience by providing
real-time feedback.

Mario:
Yes, haptic feedback can greatly enhance the user experience. It provides an immediate and
intuitive sense of interaction, which can make the app feel more responsive and engaging.

Mike:
Yes, haptic feedback would be very helpful. It would confirm that I've successfully pressed a
button or performed an action, which can be reassuring.

2.1) (O) What would your expectations be regarding the accuracy of the app's AI in
determining age, gender, and mood from facial expressions?

Aiad:
My expectations regarding the accuracy of the app's AI in determining age, gender, and
mood would be fairly high. Although I understand that there may be occasional errors, as is
often the case with AI, the app should be correct most of the time to build user trust and
provide a meaningful experience.

Mario:
I would expect the AI to be reasonably accurate most of the time. However, I understand that
it's not going to be perfect, and I'm okay with that. As long as the errors it makes are minor
and infrequent, I'd be content.

Mike:
I think it would be very helpful if the AI could be quite accurate, especially for people who are
visually impaired. If it's consistently wrong, it could lead to confusion or misunderstandings.
That being said, I also understand that technology isn't perfect and there might be
occasional errors.

23

2.2) (O) In an ideal scenario, how do you believe the app should handle uncertainties
or ambiguities (for example, when the AI can't confidently determine a person's
mood)?

Aiad:
I believe the app should handle uncertainties or ambiguities by providing a range or
confidence level. For example, if the AI can't confidently determine a person's mood, it could
offer a range such as "mostly happy with a 20% chance of neutrality". This communicates
the uncertainty in a transparent and understandable way.

Mario:
If the app is unsure about something, I'd want it to be honest about it. Rather than making a
guess that might be wrong, it could provide a range of possibilities or simply say it's unsure.

Mike:
In case the app is unsure about its prediction, it should probably state so. Maybe it could
give a range or approximation, or suggest it's a best guess, just so that the user knows the
information might not be completely accurate.

2.3) (C) Do you believe a confidence percentage indicating the AI's certainty of its
assessment (e.g., 85% confidence that the person is happy) would be helpful?

Aiad:
Yes, I think a confidence percentage would be very helpful. It would provide transparency
about the app's decision-making process and help users understand that AI predictions are
probabilistic and not always 100% accurate.

Mario:
Confidence percentages sound like a cool feature. They would provide some context for the
app's predictions and help me understand the AI's thought process. Plus, it would be fun to
see if the AI's confidence aligns with my own assessments of people's age, gender, and
mood.

Mike:
Yes, I think showing confidence percentages could be a good idea. It would help me
understand how certain the app is about its predictions. But the app should explain clearly
what these percentages mean, so I don't misunderstand.

24

3.1) (O) Can you describe a scenario where you would find this app most useful in
your daily life?

Aiad:
As someone who works extensively with technology, I can see myself using this app in social
or networking scenarios. For example, I might use it at a tech conference to gain quick
insights about people I'm interacting with.

Mario:
I can see myself using this app in various social settings to make interactions more
interesting and engaging. It could be a fun ice-breaker at parties or gatherings. Additionally,
it could be helpful in understanding people's emotions better in certain situations, especially
if I'm having trouble reading their expressions.

Mike:
To be honest, I might not use this app daily as my interaction with technology is limited.
However, I can see it being beneficial in social gatherings where I might find it difficult to
recognize faces or judge emotions due to my ageing eyesight.

3.2) (C) Do you anticipate using this app frequently, for example, daily, weekly, or only
for special occasions?

Aiad:
Given the nature of my work and my interests, I can see myself using this app on special
occasions or when meeting new people. It might not be an everyday tool for me, but it could
provide valuable insights in specific scenarios.

Mario:
I'd probably use it quite often, especially when hanging out with my friends or when meeting
new people. It could add an interesting dimension to social interactions.

Mike:
I could imagine using this app in family gatherings or when I meet with my old friends. It
could also come in handy in situations where I'm interacting with new people and can't see
their faces clearly.

25

3.3) (O) What specific features or functionalities would you want this app to have to
best suit your personal needs and preferences?

Aiad:
As a developer, I would appreciate detailed insights from the AI's analysis. Apart from face
and mood, the app could also infer an estimation of a person's ethnic heritage, age, and
gender, based on their appearance and expressions. Additionally, I would like the app to
have a feature that allows me to give feedback or corrections to the AI's predictions, thereby
improving its learning process.

Mario:
Apart from the basic features of estimating faces and mood, it would be awesome if the app
could also have a feature that allows me to share its predictions with others directly from the
app.

Mike:
For me, the most useful features would be face and mood recognition. As my vision isn't
what it used to be, these features could help me in social situations by giving me insights
about people around me that I might not have been able to recognize myself.

4.1) (C) Would you prefer the option to adjust the speed and pitch of the
text-to-speech feature to accommodate your listening comfort?

Aiad:
Yes, being able to adjust the speed and pitch of the text-to-speech feature would be highly
beneficial. Everyone has their listening comfort level, and being able to personalise this
would greatly improve the user experience. Also, people with hearing impairments might
benefit from slower speeds or different pitches.

Mario:
Definitely! I think being able to adjust the speed and pitch of the text-to-speech would be a
great feature. People listen and comprehend at different speeds, and some pitches might be
more comfortable for some users than others. Having control over these settings would
make the feature more user-friendly and personalised.

Mike:
I think the voice output should be slow enough for me to comprehend but not too slow that it
feels unnatural. It would be helpful if the app allows me to adjust the speech speed
according to my comfort.

26

4.2) (O) In what situations do you think using a text-to-speech feature could be most
beneficial for you or other users of the app?

Aiad:
I think the text-to-speech feature could be most beneficial in situations where visual
interaction with the app isn't possible or convenient. For instance, if I'm using the app in a
crowded environment or while performing another task, having the app read out its analysis
would be more practical than reading it on the screen.

Mario:
I think the text-to-speech feature could be very useful when I'm in a noisy environment and
can't look at my screen, or when I'm multitasking and need my hands free. It could read out
the app's predictions so I can keep up with what's happening without having to stop what I'm
doing to look at the screen.

Mike:
I think using a text-to-speech feature could be very beneficial in situations where I'm trying to
understand what's on the screen but have trouble seeing it without glasses. For example, if
the app is displaying information about someone's age, gender, or mood, the text-to-speech
feature would allow me to listen to this information instead of trying to read small text on the
screen.

27

After the interviews, the following key points were established:

● There is a clear gap in the market for a mobile app that utilises artificial intelligence
and augmented reality technologies to assist visually impaired individuals or any user
seeking an innovative interaction method. Costly development and potential privacy
concerns are often obstacles in creating such applications, particularly in a society
where the respect for individual privacy is paramount. However, these challenges can
be addressed with careful design and ethical considerations.

● The proposed app, while leveraging artificial intelligence for face analysis, does not
aim to replace human perception entirely. Instead, it supplements human
understanding and can be seen as a tool that works in tandem with human intuition,
particularly for visually impaired users. While AI is growing in capabilities, it is still
crucial to acknowledge the irreplaceability of human insight and understanding in
interpreting emotional and contextual cues.

● The introduction of an app with these features could significantly enhance efficiency
and accessibility for users. By quickly interpreting faces and generating information
about the individual's age, gender, and mood, users can gain quick insights without
relying heavily on their visual capacity. This 'time-saving' aspect is incredibly valuable
for all users, particularly those who might struggle with visual interpretation.

● For visually impaired users, the app could potentially provide a level of independence
and confidence in social situations, as they would be able to understand their
surroundings better and perhaps anticipate social interactions. This positive impact
can extend to a wider user base who might find innovative and practical uses for the
app in their daily lives.

● The app's success depends on its ability to cater to a diverse user base with varying
technical skills. The user interface should be simple and intuitive to ensure broad
accessibility, even for users who are not well-acquainted with complex mobile
applications.

● The app will use facial recognition to provide estimates of age, gender, and mood
based on facial features. While the emphasis will be on these attributes, the app will
not infringe upon personal identities or use names, ensuring that privacy is
maintained.

● The application will leverage the live camera feed of the user's mobile device,
allowing real-time analysis and providing immediate feedback. This feature enhances
the app's usefulness in dynamic and social settings where understanding immediate
context and interactions is key.

28

Features of the proposed solution

Feature to include Reasoning Evidence

A section of the screen
dedicated to the live camera
feed

This allows the user to see the real-time
footage that is currently being analysed
by the app, making the process
transparent and the application more
engaging.

● DeepFace
● Visage Technologies
● MorphCast
● Interview with Aiad Tarik
● Interview with Mario Prifti

A button that activates facial
analysis

The use of a button to initiate the facial
analysis process will simplify the user
interface, making the app more
user-friendly. It will also give the user
control over when the analysis takes
place, preserving battery life and data
usage.

● DeepFace
● Interview with Aiad Tarik
● Interview with Mario Prifti

Text-to-speech button A feature that allows the app to audibly
deliver the results of the facial analysis.
This is particularly useful for visually
impaired users.

● Interview with Aiad Tarik
● Interview with Mike Parish

Dynamic labels showing
estimated number of people and
mood and sliders.

Labels and sliders that appear on the
screen to indicate the estimated number
of people and the moods of the people
in view. This provides a quick visual
summary of the analysis results.

● Visage Technologies
● MorphCast
● Interview with Aiad Tarik
● Interview with Mario Prifti

Integrated tutorials or guide Integrated tutorials will help new or less
tech-confident users to understand how
to navigate and utilise the app
effectively. This feature ensures the
app's usability across a broad range of
users.

● Interview with Aiad Tarik
● Interview with Mike Parish

The visual outline of detected
faces

To indicate the target of the analysis and
confirm that a face has been detected,
an outline around the detected face will
be displayed. This feature enhances
user understanding and allows them to
align the face properly with the camera.

● DeepFace
● MorphCast
● Interview with Aiad Tarik
● Interview with Mario Prifti
● Interview with Mike Parish

User feedback system A system for users to provide feedback
about the app's performance, accuracy,
or any potential issues will be included.
This will help in the app's continuous
improvement and evolution.

● MorphCast
● Interview with Aiad Tarik
● Interview with Mario Prifti
● Interview with Mike Parish

29

Limitations of features from researched solutions

Feature Evidence Limitation

Dyanmic Labels ● Visage Technologies
● Morphcast

Visage Technologies and morphcast utilise
server-side processing, where they are able to
update labels and sliders in real-time. Since my
application is on a mobile phone, I will mainly be
focusing on local processing. As a result, the
inclusion of real-time updating dynamic labels will
look laggy and affect performance, due to the little
processing power that an mobile phone has.

User feedback
system

● Morphcast
● Stakeholder Interviews

In order to implement a user feedback system, I will
need to incorporate a lot of back-end code thats
sends a message to a server that I have access to,
which may be costly and not fit within
time-constraints. Furthermore, without proper
guidance or structured feedback mechanisms,
users may provide vague or unhelpful feedback,
making it difficult to extract actionable insights from
the data, which results in a feedback system being
too unreasonable to implement.

Integrated
tutorial/Guide

● Stakeholder Interviews If the tutorial is only available in one language, it
may exclude users who are not proficient in that
language, limiting the app's accessibility and
usability for a diverse user base. Also, Some users
may prefer to explore the app on their own rather
than following a guided tutorial, and forcing them to
go through the tutorial may lead to resistance or
negative perceptions of the app. Furthermore,
another limitation of implementing a tutorial, can
cause maintenance issues such as having to
update and maintain the tutorial to reflect changes
in the app or new features. This can be
time-consuming and resource-intensive, especially
for a small project.

30

Software and hardware requirements

For development:
These requirements are based on the prerequisites for the primary development tools and
platforms, namely Unity, ARKit plugin, OpenCV for Unity package, and C#.

System Requirement Justification

macOS 10.15 or newer The operating system required to run the
latest version of Xcode and Unity without
compatibility issues.

2.4 GHz processor (quad-core) This is needed because it is the minimum
processor speed required to run Unity and
Xcode efficiently.

8-16 GB of RAM This is needed because it is the minimum
amount of RAM needed to run Unity,
Xcode, and to test the application within the
development environment.

Hard disk space up to 100 GB This is needed because it should be
enough storage to account for the code,
libraries, and datasets.

Unity 2022.1.1f1 This is the platform on which the app's code
will be written and executed.

ARKit Unity Plugin This plugin is necessary for building AR
applications within Unity.

OpenCV for Unity Package This package allows OpenCV functions to
be called in Unity, which will facilitate the
implementation of the app's machine
learning models.

C# This is the programming language that will
be used to write the app's code within Unity.

Xcode 12 or newer This is needed to compile and deploy the
app to an iPhone.

31

For the user:

System Requirement Justification

iPhone with iOS 13.0 or newer The app will be built to function on iOS
devices, utilising ARKit and OpenCV for
Unity.

Stable Internet Connection This is needed because the app may need
to access online resources or updates.

Rear Camera This is essential for the AR capabilities of
the application.

Speakers These are needed in order for the user to
hear the text-to-speech output produced by
the app.

32

Success criteria

The development of this mobile app will be guided by the following standards. On a scale of
1 to 3, the relevance of each characteristic will be graded. The number 1 signifies a high
priority, whereas the number 3 implies a lower priority. My primary attention will be on the
high- and moderate-importance criteria (1 and 2). Based on the time and knowledge
restrictions, low priority features will be developed as pleasant extras that are not essential
to the system's operation.

ID Feature Justification Priority

1 Camera functionality when user
opens app

The camera feed is fundamental for the app to
function as it provides the visual input for all
processing. Without it, none of the following
features can be achieved.

1

2 User interface design The user interface should be simplistic and intuitive
as it can directly affect the user experience. It
should be designed with visually impaired users in
mind.

2

3 Identification of people in
camera's view/facial recognition

This is crucial for the application as it sets the
basis for further analysis such as facial recognition
and mood detection

1

4 Object detection Object detection may be added as a separate
section of the program where the user can point
their camera and view the various objects in their
field of vision and surroundings, however this
feature is not necessary to the main function of the
program.

3

5 Home screen The home screen for the application should be
welcoming and also clear. Because this is the first
scene that the user is going to see and as a result,
should set off a positive impression on the
application.

2

6 Mood recognition based on
facial expressions

Identifying the mood of the person in view can help
visually impaired users understand non-verbal
cues and respond appropriately.

1

7 Text-to-speech output for
processed attributes

This feature enables the application to relay the
recognized information (gender, age, and mood) to
the user orally. It caters to the needs of the visually
impaired users who might not be able to see the
results displayed on the screen.

3

8 Image capture and captioning The app should allow the user to capture an image 3

33

and generate a basic caption of the image’s
content. This aids in creating a mental visualisation
of the surroundings for the user.

9 Responsiveness (20fps
consistent feed)

The application should operate with minimal lag
between capturing an image and generating
results. A quick response time is critical for the
user's experience. Due to the time limits and
computational bottlenecks, I may result in single
frame captures where the inputs are processed
slower and outputted afterwards (almost like taking
a photo and analysing what’s inside it)

2

10 Accuracy The output (age, gender, mood, image caption)
should be as accurate as possible to provide the
user with reliable information about their
surroundings. Although due to the time pressure
and computational power required, I may not be
able to get very accurate results all of the time.

2

11 Ease of use Considering the user may not have much
experience with technology, the application should
be simple to navigate. All features should be
readily accessible, and instructions should be clear
and concise.

1

12 Variable text-to-speech voice
pitch/volume/speed

The application should allow users to customise
the pitch, volume, and speed of the text-to-speech
voice output. This can help users to understand the
audio output more comfortably and according to
their preference.

1

34

Design

Overview of the system (top-down design/systems diagram)

The diagram below shows a top-down breakdown of my planned project and its
implementations, thus allowing me to follow a guide when developing my iterations and
visually view which parts will be complete, which will be re-useable, and which are
completed/left to do.

Level 1 of the top-down design contains all of the primary functions of the project such as AI
input, AI processing, Output, UI Output, app UI, and Image Captioning. The image captioning
and app UI sections of level 1 are going to be developed in the later iterations as they do not
serve a critical purpose in my program.

Level 2 breaks down the functions further into separate processes and problem-solving to
help tackle any obstacles that may come in the way, such as pre-processing images and
outputting results in the correct format. This will allow for more manageable development
of the program through the use of sub-functions.

Finally, Level 3 and 4 goes into further detail about the specific processes used to attain the
level 2 sub-functions, such as which models to use, where to import from, specific
formatting, and splitting data types etc. These end levels will ensure that the level 2
functions are met and can be executed perfectly.

35

Section 1:

36

Section 2:

Section 3:

37

Module Descriptions

AI input
This section is the most important section in
the whole project. The AI input section will
manage taking an input and pre-processing the
image to work with the computer vision
models. This includes importing the pre-trained
models, along with their execution scripts, and
more importantly, the ability to instantiate a
webcam object for the image to be processed
in real-time through the update() method.

AI Process
This section details the processing of images for the models,
which will include converting the webcam texture to the
correct unity material type to allow it to be displayed on
screen and then executed. In addition to this, the
face-tracking model will be responsible for identifying the
co-ordinates of the corners of the detected faces, and draw a
bounding box around them, allowing for easy visualisation.

AI Output
This section manages the output of results from the AI
models. After processing the inputted data from the
webcam, the program will then convert these results to a
type that is recognisable by Unity to be displayed on
screen. This includes the drawing of bounding boxes,
converting a json output to a string, and splitting outputs
(0, 1, 2, 3, 4, 5, 6) into their respective moods (0=Angry,
1=Disgust, 2=Fear, 3=Happy, 4=Sad, 5=Surprise, 6=Neutral)

38

UI Output
The following section details the output to be set to
the user interface. This includes the text, video
output, and the text-to-speech audio output. The
subroutines include:

- Screen auto-rotation
- Centring the camera
- Text position

Buttons/UI
This outlines the general interface that the user will
experience when using the app – this includes any
buttons, perhaps haptic feedback functionality,
landing page and perhaps any other scene’s/settings
button

39

AI Image Captioning
The AI Image Captioning section of this project is perhaps the most
ambitious – This is due to the large amount of processing and data
moving. Unity would perhaps not be able to be equipped to handle
the task of captioning real-life images and as a result, the handling of
this task would most likely be done on an external python flask server
and the results would be sent back to unity. This section will require
deeper planning and its execution will most likely be in the second or
third iteration, since it may not be necessary for the program.

40

Proposed Screen Designs and usability features

Design style
I will be designing my app using a
minimalistic aesthetic, similar to that of
Uber, which follows a basic, black and
white colour scheme, along with rounded
buttons and UI, pleasing to the eye and
easy to follow, for people of all levels of
tech experience – this is particularly
useful as the app will be used by many
different demographics and thus should
be a universally understandable interface.

Font
I will be using the “Raleway”
font throughout this project.
This font caught my eye due
to its level of minimalism
and easy readability. This is a
free, open-source font
available online which is
useful for my project, as it
aims to be built on
open-source functionalities.

Colours
I want my application to be easy-to-follow, while following an appealing aesthetic. This will
include a high-contrast, aesthetic colour scheme, such as dark grey/black, white/off-white
and light blue.

41

Main menu

When starting the
application, the user should
be greeted with a pleasant
main menu, directing them
to appropriate
functions/scenes, such as
object detection, emotion
detection, image captioning
etc…

The main menu should be
welcoming and responsive,
with an emphasis on
accessibility, since my
project is surrounded around
this.

The home screen of an app serves as the entry point for user interaction and sets the tone
for their experience. An accessible and eye-catching home screen is essential for several
reasons:

1) First Impressions Matter: The home screen is the first thing users encounter, so it
should make a positive impact. An eye-catching design can captivate users,
encourage engagement, and reflect the app’s purpose. The home screen, with its
clean, modern typography and a slogan that suggests innovation and
forward-thinking, can attract users interested in the app.

2) Accessibility Ensures Inclusivity: Accessibility is vital for providing all users, including
those with disabilities, the ability to use the app effectively. By making the home
screen accessible, I can ensure that the app is usable for a wider audience, which not
only broadens the user base but also demonstrates social responsibility. The clear
contrast between the elements on the home screen and the use of large, readable
text is a good start toward this inclusivity.

3) Clear Navigation: A well-designed home screen guides users intuitively to the next
steps. The use of clearly labeled buttons such as "FACE/EMOTION" and "OBJECT"
helps users understand what actions they can take, reducing confusion and
improving the overall experience.

42

Emotion Detection Scene

This will be the main scene
of the application. When
opening this scene, the user
should be greeted with a
highly user-friendly interface
and basic layout. There
shouldn’t be any
unnecessary buttons and
text on the screen. It will be
focused on the camera
output, and any UI that will
benefit the user by allowing
them to interact with the
scene through the various
functions such as image
captioning, Text-to-speech

and more.

Face and Emotion Detection:

The upper-left corner of the interface features a notification area that indicates the number of
faces detected. This immediate feedback is for users to understand that the app is actively
processing the scene in real time.

Each detected face is highlighted and labeled with the identified emotion. This direct visual
cue ensures users know the AI's analysis outcome without searching through menus or text,
which enhances the interactive experience.

Caption Box and Transparency:

The caption box, located at the top, is designed to be transparent to minimize obstruction of
the camera's view. This design choice respects the user's primary need to view the camera
feed while simultaneously providing contextual information.

When the user takes a picture, the AI-generated caption will appear in this box, providing an
unobtrusive yet clear narrative of the image.

43

Camera and Captioning Function:

A camera icon serves as the central action button, intuitively understood as the trigger for
image capture and subsequent captioning. This familiar iconography reduces the learning
curve for new users.

The "Clear caption" feature is a thoughtful addition, allowing users to remove the caption if
they desire a clear view or wish to retake the photo without previous context lingering on the
screen.

Text-to-Speech:

Along the bottom of the screen, the text-to-speech function is represented by a speaker icon.
This feature is essential for accessibility, allowing users with visual impairments to hear the
captions and emotional analysis.

Object Classification Scene

The object classification screen is an
extra feature that I will implement, due
to the vast amount of readily available
pre-trained models such as YoLo (You
only look once). This will not have any
excess UI or TTS, rather it would
simply be a ‘playground’ of some sorts
that the user can play around with, to
test the functionality and capabilities of
AI.

This scene emphasizes clarity and direct interaction with the environment through the
camera. Here's an in-depth analysis of this scene's design:

Object Detection Interface:

The scene prominently displays the object detection feature by highlighting objects with
dotted outlines and labeling them. This instant visual feedback is crucial for the user to
understand what the app is identifying in real-time, providing an interactive and informative
experience.

44

Simplified Functionality:

In contrast to the main scene, this scene is even more simplified, with only the essential
functionalities present: the home button and the flip camera button. This decluttering aligns
with the scene's purpose, which is solely to identify objects, and avoids overwhelming the
user with options that are not required for the task.

Direct User Engagement:

By focusing on the camera feed and the identified objects, the scene encourages users to
engage directly with their environment. This kind of interaction can be particularly appealing
to users interested in learning about their surroundings or needing to quickly identify objects.

This additional scene's design is effective in its simplicity and functionality. It aligns with the
app's overall theme of using technology to interact with and understand the environment

45

Settings Page

The settings scene for the
app is a critical component
that offers personalization
and control over the
Text-to-Speech (TTS)
functionality. This scene
should be intuitive, easy to
navigate, and provide users
with clear feedback.

The key elements for the design of the settings page are as follows:

TTS Customization Options:

Pitch, Rate, and Volume Sliders: These controls allow users to customize the TTS output to
their preference. Sliders are an excellent choice for these settings, as they offer granular
control and are easily adjusted with touch input.

Test Button: A ‘Test’ button is present to enable users to immediately hear the effects of their
adjustments. This instant feedback is essential for fine-tuning the TTS settings without
leaving the settings scene.

Voice Selection:

Voice Carousel: I have included a carousel for voice selection, indicated by the "Voice" box
with arrows to navigate between different options. This lets users sample and choose from
multiple TTS voices, enhancing the user experience through customization. This is because
iOS’s built-in TTS package has many different voices to choose from, so perhaps I will try to
allow for the user to cycle through them

Confidence Threshold:

While not visually represented in the provided image, the confidence threshold is a
sophisticated feature that allows users to set the level of certainty the AI needs before
making a decision or providing output, which can reduce false positives or ensure only
high-confidence information is spoken.

46

Navigation:

Similar to the other scenes, the bottom navigation buttons allows for easy movement
between different parts of the app. This consistency in navigation design helps users quickly
learn how to move around the app.

47

Useability Features

To make the AI app useful and accessible to everyone, especially those who are visually
impaired, it's crucial to focus on several key principles. The application must be effective,
efficient, engaging, error-tolerant, and easy to learn. These qualities are essential for
developing a robust solution that provides a positive user experience, encouraging continued
use of the app for its intended purpose.

Effectiveness
The effectiveness of an application is measured by its ability to help users accomplish their
intended tasks with accuracy and reliability. In the case of my AI face detection software,
effectiveness is paramount, as it directly impacts the user's ability to understand their
surroundings through audio descriptions of people and objects captured by their iPhone's
cameras. By leveraging advanced AI algorithms, the app accurately identifies faces and
objects in the camera's view, providing detailed captions that are then converted into spoken
words through text-to-speech technology. This process ensures that users, regardless of
their visual capabilities or technical expertise, can achieve their goal of comprehending their
environment more fully. To cater to our diverse target audience, from those with visual
impairments to tech enthusiasts, the software is designed with simplicity and precision in
mind. The application's effectiveness is further enhanced by its ability to adapt to various
lighting conditions and environments, ensuring reliable performance in real-world use. This
commitment to effective design and functionality makes our AI face detection and captioning
software a powerful tool for enhancing accessibility and understanding, empowering users to
engage more confidently with the world around them.

The core of its effectiveness lies in the sophisticated AI algorithms that drive the software.
These algorithms are trained on a vast dataset of images, enabling the software to recognize
faces and objects with high precision across different environments, lighting conditions, and
angles. This breadth of recognition capabilities ensures that users receive accurate and
useful descriptions of their surroundings, regardless of the complexity of the scene in front of
them.

The software's effectiveness is further amplified by its seamless integration with the iPhone's
hardware, utilizing both the rear and front cameras to capture comprehensive views of the
user's environment. This dual-camera approach allows for a versatile application, whether
the user is navigating new spaces or engaging in social interactions, the app provides
audible feedback about what is in their immediate vicinity.

Moreover, the application's text-to-speech (TTS) feature is a critical component that
enhances its effectiveness. By converting visual information into audio, it bridges the gap
between the digital and physical worlds for users with visual impairments. The TTS
technology isn't just a straightforward narration tool; it's designed with customization in mind.
Users can adjust the voice settings, including pitch, rate, volume, and voice type, allowing for
a personalized experience that caters to individual preferences and needs. This level of

48

personalization not only makes the software more accessible but also more engaging,
encouraging users to rely on it in their daily lives.

Efficient
Efficiency in this context encompasses several dimensions, starting with the application's
processing speed. The software is engineered to perform face and object detection swiftly,
minimizing the delay between capturing an image and providing audio feedback, while also
maintaining a relatively smooth 20-30fps. This rapid processing ensures that users receive
real-time information about their environment, a critical feature for those relying on the app to
navigate unfamiliar spaces or interact with nearby objects and individuals. Fast response
times are achieved through the optimization of AI algorithms, which are designed to work
effectively within the computational constraints of mobile devices without compromising
accuracy.

Moreover, the app's efficiency is evident in its minimal impact on the device's battery life. By
leveraging the iPhone's hardware efficiently, the software minimizes energy consumption,
enabling users to rely on the app for extended periods without concern for rapid battery
depletion. This consideration is paramount for users who depend on the app throughout their
daily activities, ensuring that the technology supports their needs without introducing
additional constraints.

The software also demonstrates efficiency in data usage. By processing images directly on
the device, it reduces the need for constant data transfers to cloud servers, which not only
speeds up recognition tasks but also addresses privacy concerns. Local processing ensures
that users can access the app's features even in areas with limited or no internet
connectivity, enhancing the app's utility across various scenarios.

Furthermore, the app's user interface contributes to its overall efficiency. By employing a
design that is both simple and intuitive, users can navigate the app with minimal effort,
reducing the cognitive load and making the technology accessible to individuals with varying
levels of tech savviness. This ease of use is critical for ensuring that the app can be quickly
adopted and integrated into the user's daily routine, maximizing its effectiveness as a tool for
enhancing independence and quality of life.

49

Engaging
The engaging nature of the software is rooted in its interactive design. By utilizing the
iPhone's front and rear cameras, the app invites users to explore their surroundings actively,
turning what could be a routine activity into an interactive experience. This exploration is
further enhanced by the software’s ability to provide detailed, real-time descriptions of
people and objects, transforming the mundane into opportunities for discovery and learning.
Such features make the app not just a tool but a companion for daily adventures,
encouraging users to engage more deeply with their environment.

Personalization plays a crucial role in making the software engaging. The ability for users to
adjust text-to-speech settings, including pitch, rate, volume, and voice type, allows them to
tailor the auditory feedback to their preferences, making the experience more comfortable
and enjoyable. This level of customization ensures that the app speaks to the user in a voice
that feels familiar and friendly, fostering a stronger connection between the user and the
technology.

The app's simple and easy-to-follow user interface (UI) enhances engagement by reducing
friction in the user experience. By prioritizing intuitive design and basic icons while
minimizing unnecessary text, the app ensures that users of all tech-savviness levels can
navigate it effortlessly. This ease of use encourages frequent use, as users are not deterred
by a complex or confusing UI. The straightforward design philosophy not only makes the app
accessible but also more inviting to users, encouraging them to explore its features and
capabilities fully.

Additionally, the software’s engaging character is amplified by its educational aspect. Users
are not only informed about their immediate surroundings but also have the opportunity to
learn about different objects and facial recognition technology. This educational value adds a
layer of depth to the user experience, making the app not just a functional tool but also a
source of knowledge and personal growth.

50

Error-Tolerant
The software's error tolerance is significantly enhanced by the inclusion of a user-adjustable
minimum confidence level for detections. This setting empowers users to customize the
balance between accuracy and the quantity of information provided. By setting a higher
confidence threshold, users can reduce the likelihood of receiving incorrect identifications,
tailoring the app's performance to prioritize precision. Conversely, users willing to accept a
broader range of detections, potentially with a higher risk of errors, can lower this threshold
according to their preferences or needs. This level of customization is particularly beneficial
in diverse environments where the challenge of accurate detection varies, allowing users to
adapt the app's sensitivity to their current situation.

This approach acknowledges the inherent challenges in face and object detection
technologies, where varying conditions can affect the AI's performance. By giving users
control over the confidence level, the app not only enhances its usability under different
circumstances but also instills a sense of agency, allowing individuals to dictate how they
interact with the technology based on their comfort level with its accuracy.

Furthermore, this feature demonstrates the software's commitment to error tolerance without
directly exposing users to the complexities of its AI algorithms. Instead of burdening users
with technical feedback on the nature of errors, the application simplifies error management,
focusing on delivering the most reliable results possible. This decision respects the user's
desire for a straightforward, effective tool, avoiding unnecessary confusion or frustration that
could arise from technical explanations of AI limitations.

Moreover, the settings page, where users can adjust the confidence level, is designed with
clarity and accessibility in mind. This ensures that even those not technically savvy can
understand and control this feature, enhancing the overall user experience. By seamlessly
integrating this setting into the app's intuitive interface, the software maintains its
user-friendly appeal while offering sophisticated customization options.

51

Easy to Learn
The cornerstone of the software's easy-to-learn nature is its intuitive user interface (UI). The
UI is designed with simplicity in mind, featuring clear, large icons and a minimalistic layout
that reduces cognitive load and visual clutter. This design choice ensures that users can
navigate the app without feeling overwhelmed, making it particularly accommodating for
those who are not tech-savvy or may have visual impairments. By employing universally
recognizable symbols and organizing features in a logical, straightforward manner, the app
minimizes the learning curve, allowing users to become proficient in its use quickly.

Another aspect that contributes to the software's ease of learning is its consistency across
different sections. Consistency in design and interaction patterns reassures users, as the
skills learned in one part of the app are transferable to others. This coherence in user
experience reduces confusion and builds user confidence, as they know what to expect and
how to interact with the app as they explore its various features.

The software also includes an advanced settings page, which, while offering advanced
options like adjusting the minimum confidence level for detections and personalizing
text-to-speech settings, is designed to be straightforward and easy to understand.
Explanations for each setting are clear and concise, guiding users through the customization
process without overwhelming them with technical jargon or excessive options. This balance
between customization and simplicity ensures that users can tailor the app to their needs
without a steep learning curve.

To further facilitate easy learning, the app incorporates onboarding tutorials at the initial
launch, offering users a guided tour of its features and how to use them effectively. These
tutorials are designed to be engaging and informative, providing just enough information to
get started without inundating users with details.

52

Algorithm Designs

53

CaptureCamera() Description

Texture2D texture;
WebcamTexture WebCamTexture;
private int currentCameraIndex = -1;

static string FER_model_filepath = "OpenCV/FER.onnx";
static string face_detection_model_filepath = "OpenCV/FaceDetect.onnx";

do {
 currentCameraIndex++;
 if (currentCameraIndex >= WebCamTexture.devices.Length)
 {
 currentCameraIndex = 0;
 }
 } while (WebCamTexture.devices[currentCameraIndex] == UltraWideAngle)

webCamTexture = (WebCamTexture.devices[currentCameraIndex].name);

// Start the camera
webCamTexture.Play();

texture =Texture2D(webCamTexture.width, webCamTexture.height);
gameObject.GetComponent<Renderer>().material.mainTexture = texture;

faceDetector = new FaceDetectorClass(face_detection_model_filepath);
FER = new FacialExpressionRecognizerClass(FER_model_filepath);

This algorithm operates by initializing
a new blank texture and scanning for
a camera that isn't categorized as
UltraWideAngle, due to its potential to
distort the visual field, which is critical
for precise object and face detection.
It systematically increases the
camera index until it locates a
suitable camera. Once found, it
activates this camera and captures
the live feed, transforming it into a
texture that matches the camera's
dimensions. This texture is then
applied to a gameObject within the
Unity environment, effectively
rendering the live camera feed.

Preconditions Inputs Output

The target devices must have a camera 1. Device Camera 1. Texture material on object renderer

Key Variables

Name How it’s used Data Type

texture This is the texture material that will be
generated from the camera output and
applied to the gameObject renderer, in

this case, it will be the camera
gameObject

UnityEngine.Texture2D - I used this as
this is the class that represents textures

in C# code within Unity.

WebCamTexture This is the texture that will be captured
from the camera. Depending on the

camera currently selected.

UnityEngine.WebcamTexture - I used
WebCam Textures as these are the

textures onto which the live video input is
rendered.

currentCameraIndex This is used to cycle through the
onboard cameras by indexing them.

Integer - an integer is used to keep track
of the currently selected camera as it will

be a whole number cycled through

FER_model_filepath This links the filepath to the emotion
detection model that will be used

String - a string is always used when
passing a file as a variable as the

filepath is in a string format

face_detection_model_filepath The links the filepath to the face
detection model that will be used

String - a string is always used when
passing a file as a variable as the

filepath is in a string format

54

Link to success criteria

This covers success criteria point 1 (Camera functionality when user opens app). The camera feed is fundamental for the app to
function as it provides the visual input for all processing. Without it, none of the application features can be achieved.

55

Update() - Face Detection Description

int faceCount = 0;

texture.SetPixels(webCamTexture.GetPixels());
texture.Apply();

Mat faces = faceDetector.infer(texture);
List<Mat> expressions = new List<Mat>();

for (int i = 0; i < faces.rows(); ++i)
 {
 faceCount++;
 Mat facialExpression = FER.infer(texture, faces.row(i));

 if (!facialExpression.empty())
 {
 expressions.Add(facialExpression);
 }
 }

faceDetector.visualize(faces, texture);
FER.visualize(expressions, texture);

gameObject.GetComponent<Renderer>().material.mainTexture = texture;

faceCountText.text = ("Faces Detected:\n" + faceCount);

This algorithm, executed every frame in
Unity's Update() method, refreshes a
texture with the webcam's live feed, then
applies face detection to identify faces
within the frame. For each detected face,
it evaluates facial expressions,
incrementing a count for faces and
collecting expression data. Detected
faces and expressions are visualized
on-screen, with the face count displayed
for immediate feedback. The process
concludes by converting the detection
results back into a texture for Unity
rendering, enabling real-time monitoring
and interaction with detected facial
features and expressions.

Preconditions Inputs Output

A camera is available and capable of
capturing video feed.

The faceDetector and FER (Facial
Expression Recognition) models are

preloaded and initialized.

1) Webcam Texture 1) Updated Texture
2) Face Count
3) Expressions List

Key Variables

Name How it’s used Data Type

faceCount Counts the number of faces detected in
the current frame.

Integer - an integer is used for this as
there can only be a whole number of

faces. Keeping track and calculating with
an integer is much easier than other data

types

texture Stores the texture that is updated with
the webcam feed and later with the
detection and recognition results.

UnityEngine.Texture2D

faces Stores the detected faces in the frame. UnityEngine.Mat - The Unity material
class. This class exposes all properties

from a material, which can then be
processed and manipulated.

expressions Collects the facial expression data for
each detected face.

List - a list is used as there may be
multiple faces. I did not use an array as

the number of faces may changed and is
not fixed, and a C# list is dynamic

facialExpression Temporarily holds the facial expression
data for a single detected face before

UnityEngine.Mat

56

adding it to the expressions list if not
empty.

Link to success criteria

This covers success criteria points 3 (Identification of people in camera's view/facial recognition), 6 (Mood recognition based on
facial expressions), and 9 (Responsiveness (20fps consistent feed)). The face detection is fundamental for this project as it is

provides the backbone of all the other features

57

SendScreenshot.cs - start() Description

private bool connected = false;
public Text = captionTextbox;

connected = false;
InvokeRepeating("CheckConnection", 0.1f, 0.5f);
captionTextbox = "";

The Start function initializes application settings by
marking the ‘connected’ variable as false to indicate
no initial internet connectivity. It employs
InvokeRepeating to periodically call the
‘CheckConnection’ method every 0.5 seconds after a
0.1-second delay, aiming to assess and update the
internet connection status. Simultaneously, it clears
any text in the ‘captionTextbox’ textbox to prevent
displaying captions until the app confirms internet
access, ensuring functionality like image captioning is
dependent on current connectivity. This approach
ensures the app remains responsive to changes in
internet status.

Preconditions Inputs Output

1) A textbox UI element is available
for displaying captions.

2) A coroutine named
‘CheckConnection’ exists for
checking internet connectivity.

3) A boolean variable ‘connected’ is
declared to track internet
connectivity status.

none 1) Updated ‘connected’ Variable:
Reflects the current internet
connectivity status.

2) Textbox Content: The content of
the textbox (‘captionTextbox’) is
reset to an empty string.

Key Variables

Name How it’s used Data Type

‘connected’ Initially set to false, this variable
indicates whether the application has

internet connectivity. Its value is intended
to be updated based on the outcome of

the ‘CheckConnection’ coroutine,
enabling or disabling features like image

captioning based on the internet
connection status.

Boolean - connected can only be 1 of 2
values, so a boolean is used to easily

keep track in order to successfully
maintain network validation

‘captionTextbox’ A UI element meant for displaying
captions. It is cleared at the start to

ensure no caption is displayed until one
is properly loaded or generated.

UnityEngine.UI.Text - a UI textbox is
used as the user should be able to read

the text on screen. A unity textbox is
able to be manipulated and changed via

a script and is the best choice.

Link to success criteria

This covers parts of success criteria 8 (Image capture and captioning) and 11 (Ease of use). Clearing the caption text box and
ensuring an internet connection allows the user to get a clear view of the screen and prevent any connection errors from arising

when captioning an image.

58

SendScreenshot.cs - CheckConnection() Description

private string ip = "8.8.8.8"; //Google’s public ip address

IEnumerator CheckConnection()
 {
 Ping = new Ping(ip);
 float startTime = Time.time;
 while (Ping.complete == false)
 {
 yield return null;
 if (Time.time - startTime > 4.0)
 {
 connected = false;
 captionButton.enabled = false;
 Debug.Log("Not Connected");
 yield break;
 }
 }
 connected = true;
 captionButton.enabled = true;
 Debug.Log("Connected");
 }

This algorithm assesses the device's internet
connectivity by attempting to ping Google's public IP
address (8.8.8.8). It initiates a Ping operation to this
address and monitors the ping response within a
coroutine called CheckConnection. The process starts
by recording the current time (startTime) and enters a
while loop that continuously checks if the ping operation
has completed. If the ping response is not received
within 4 seconds, the algorithm concludes that the
device is not connected to the internet (connected =
false), logs a "Not Connected" message, and exits the
coroutine to avoid unnecessary processing. If the ping
operation completes successfully within the 4-second
window, it sets the connected variable to true and logs
"Connected," indicating a successful internet connection.
This method provides a straightforward, time-bound
check for internet connectivity, crucial for applications
that require an active network connection to function
correctly.

Preconditions Inputs Output

1) The device is capable of initiating
ping requests.

2) Google's public IP address
(8.8.8.8) is accessible and can be
used to test internet connectivity.

1) Google’s ip address 1) Connection status boolean
updated

2) Debug Connection status

Key Variables

Name How it’s used Data Type

‘ip’ Stores Google's public IP address as the
target for the ping operation to test

internet connectivity.

String - an ip address is in the format
“x.x.x.x” due to the multiple ‘dots’, the ip

must be passed as a string as it is not an
integer, or a float

‘startTime’ Records the time at the start of the ping
operation to track its duration.

Float - Time will be a decimal value
which is why a float is used for this.

Link to success criteria

This covers parts of success criteria 8 (Image capture and captioning) and 11 (Ease of use). Preventing any connection errors
from arising when captioning an image.

59

SendScreenshot.cs - SendScreenshot() Description

public List<GameObject> UIElements;
public string serverIP;

if (connected == false)
 {
 captionTextbox = "not connected";
 return;
 }
else
 {
 captionButton.enabled = false;

 foreach (GameObject obj in UIElements)
 {
 obj.SetActive(false);
 }

 Texture2D screenshot = Screenshot.Texture();
 byte[] screenshotBytes = screenshot.Encode();

 WWWForm form = new WWWForm();
 form.AddData(screenshotBytes);

 // Send the POST request to the Flask server
 using (UnityWebRequest www = Post(serverIP, form))
 {
 yield return www.SendRequest();

 if (Request.Success != true)
 {

 Debug.Log("upload failed: " + errorCode);
 }
 else
 {
 Debug.Log("Uploaded successfully!");

 string caption = www.downloadHandler.text;
 Debug.Log("Caption: " + caption);
 captionTextbox= captionJson;

 }

 captionButton.enabled = true;

 foreach (GameObject obj in UIElements)
 {
 obj.SetActive(true);
 }

 }

This algorithm allows a Unity application to send
screenshots to a server for captioning, based on whether
the device has an internet connection. If there's no
internet, it immediately informs the user by displaying "not
connected" in the caption textbox and stops. If connected,
it temporarily disables a button to prevent multiple
requests and hides user interface elements to process the
screenshot.

It captures the current screen, converts it to a digital
format, and sends this data to a server. The application
waits for the server to analyze the image and return a text
caption describing it. If the server responds successfully,
the application displays this caption in a textbox. If there's
a problem with sending the image or receiving the caption,
it logs an error message.

After receiving the caption or encountering an error, the
application re-enables the button and shows the user
interface elements again, ready for further interaction.
This process enhances the application's functionality by
providing users with descriptions of their screenshots,
making it more interactive and accessible.

Preconditions Inputs Output

1) A Python server capable of
receiving images and returning

1) Screenshot: The image captured
from the current screen within the

1) Caption: The descriptive text
returned by the server, based on

60

captions is available and
accessible.

Unity application.
2) Server IP: The address of the

Python server to which the
screenshot is sent for captioning.

the analysis of the screenshot.
2) Error message (optional):

Displayed in case of a failure in
sending the screenshot or
receiving the caption.

Key Variables

Name How it’s used Data Type

‘connected’ Indicates whether the application has
internet connectivity.

boolean

‘captionTextbox’ Displays the caption received from the
server or a connectivity error message.

UnityEngine.UI.Text

‘UIElements’ Represents the UI elements that are
temporarily hidden during the screenshot

processing to focus on the operation.

list

‘serverIP’ Stores Google's public IP address as the
target for the ping operation to test

internet connectivity.

string

Link to success criteria

This covers parts of success criteria 8 (Image capture and captioning) and 11 (Ease of use). Preventing any connection errors
from arising when captioning an image.

61

PrepareData() Description

The flowchart describes an algorithm for processing a large COCO
dataset, commonly used in machine learning for object detection,
segmentation, and captioning tasks. The algorithm ensures the data
is ready for training a machine learning model by following these
steps:

Start: Initiate the data preparation process.

Input COCO Large Dataset: Load the COCO dataset, which is
known for its large volume and rich annotations for object detection
and segmentation tasks.

Check for Missing Data: Evaluate the dataset to identify any
missing data points or annotations. This is a crucial step to ensure
the integrity of the dataset.

Handle Missing Data: If missing data is detected, appropriate
actions are taken to handle it. This can include removing the
incomplete samples, filling in missing values with estimated data, or
using algorithms to predict missing annotations.

Data Cleaning: Perform a general cleaning process on the data,
which may include removing duplicates, correcting errors, or
standardizing the format of the data entries.

Check if Additional Cleaning is Needed: Assess whether the
dataset requires further cleaning. This is an iterative process that
may be repeated multiple times to ensure the data quality is up to
the standards necessary for effective model training.

Check Data Format: Verify if the dataset is in the desired format that
is compatible with the machine learning model or the training
process.

Convert Data Format: If the dataset is not in the required format,
convert it to the correct format. This might involve changing file
types, adjusting data structures, or transforming the way
annotations are recorded.

Normalize Data: Apply normalization to the dataset to ensure that
the numerical values are within a standard range, which helps in the
convergence of the model during training.

Split Data: Divide the dataset into subsets typically used for training,
validation, and testing. This helps in evaluating the model's
performance and avoiding overfitting.

Prepare for Training: Finalize the preprocessing steps to make the
dataset ready for training a machine learning model. This could
include compiling the data into a specific file structure, generating
metadata, or shuffling the data for randomness.

End: Conclude the data preparation process. The dataset is now
ready to be used in the training of a machine learning model.

This flowchart is a high-level representation of the preprocessing
steps necessary before the actual training of a machine learning
model can begin. It ensures that the dataset is clean,
well-formatted, and properly structured to promote efficient and
effective training outcomes.

Preconditions Inputs Output

1) The COCO dataset is available
and accessible.

2) There's sufficient computational

1) COCO Large Dataset: The actual
dataset that contains images along
with their corresponding

1) Clean and Prepared Dataset: A
version of the COCO dataset that
has been cleansed of missing or

62

resources to handle large dataset
processing.

annotations, which may include
object bounding boxes,
segmentation masks, and image
captions.

erroneous data, formatted
correctly, normalized, and split into
training, validation, and test sets,
ready for input into a machine
learning training process.

Key Variables

Name How it’s used Data Type

‘MissingData’ flag A boolean or indicator that shows
whether there is missing data within the

dataset.

boolean

‘DataFormat’ flag A boolean or indicator that signifies
whether the data is in the required

format for processing.

boolean

Link to success criteria

This covers parts of success criteria 8 (Image capture and captioning) and 10 (Accuracy)

63

TrainData() Description

This flowchart outlines the steps involved in training a machine
learning model. The process begins with the initiation of the training
phase, where the model is first initialized. Following this, the
preprocessed data that will be used to train the model is loaded.
Next, training parameters such as learning rate, batch size, and
number of epochs are configured.

The core of the training takes place in a loop where a batch of data
is loaded and fed into the model to perform a forward pass. This
forward pass computes the predictions of the model, and then the
loss is calculated to measure the discrepancy between the
predictions and the true labels. A backward pass follows, which
involves backpropagation to calculate the gradients of the loss with
respect to each parameter. The model's parameters are then
updated in the direction that minimizes the loss.

After updating the model's parameters, the algorithm checks
whether an epoch is completed. An epoch is completed when the
entire dataset has been fed through the model. Once an epoch is
completed, the model's performance is monitored by calculating the
validation loss on a separate set of data not seen by the model
during training.

If necessary, the learning rate is adjusted based on the performance
on the validation set. Then, the algorithm checks if the maximum
number of epochs has been reached or if early stopping criteria
have been met. Early stopping is a condition where training can be
halted if the validation loss stops improving for a set number of
epochs, preventing overfitting.

If the stopping criterion is met, the model undergoes a final
evaluation. If the model's performance is not satisfactory,
adjustments to the model may be made. Once the model is deemed
ready, it is saved for future use, and the training process ends.

Preconditions Inputs Output

1) A machine learning model 1) Preprocessed Data: The dataset 1) Trained Model: The machine

64

architecture is defined and ready
to be initialized.

2) Preprocessed data is available in a
format compatible with the model.

that has been cleaned, normalized,
and split into training and
validation sets, ready for the model
to learn from.

2) Training Parameters: Settings like
learning rate, batch size, number
of epochs, and other
hyperparameters critical for
training.

learning model that has been
trained on the dataset, with its
parameters tuned for optimal
performance.

2) Validation Loss: A measure of the
model's performance on the
validation set, used to monitor
learning progress and adjust
hyperparameters.

3) Final Model Performance: The
results of the final evaluation,
determining if the model's training
is sufficient or needs further
adjustment.

Key Variables

Name How it’s used Data Type

‘ModelParameters’ The weights and biases within the model
that are adjusted to minimize the loss.

string/dictionary - The parameters will
be a number of variables and inputs
which will be passed as a string or

dictionary depending on the parameter
type used for image training.

‘Loss’ A value calculated from the forward pass
indicating how well the model's
predictions match the true data.

Float - the loss value is a decimal value
that evaluates the success rate of the

model so a float is used

‘Learning Rate’ A hyperparameter that controls the size
of the steps taken during the

optimization process.

Float - The Learning rate is a coefficient
between 0 and 1 and thus a float is used

to represent this

Link to success criteria

This covers parts of success criteria 8 (Image capture and captioning) and 10 (Accuracy)

65

ProcessImage() Description

This flowchart outlines the procedure for an image captioning AI
that takes an image as input and outputs a descriptive caption. The
process starts when a user initiates an image upload. Upon upload,
the first step is to validate the image format. The AI is programmed
to work with PNG format images, so it checks if the uploaded image
is a PNG. If not, the system returns an error message to the user.

Assuming the image is in the correct PNG format, the process
moves forward to the preprocessing stage. During preprocessing,
the image is prepared for analysis, which may involve resizing,
normalizing pixel values, or applying other transformations to make
the image suitable for the model.

Once preprocessed, the AI loads a trained model designed for
image captioning. This model has been trained on a dataset of
images and corresponding captions to learn how to generate
descriptions for new images.

With the model loaded, the AI performs inference to generate a
caption for the uploaded image. After the caption is generated, it
may go through a formatting step to ensure that it's in a
human-readable form, correcting grammar, or adjusting the
sentence structure as needed.

Finally, the AI outputs the formatted caption to the user, providing a
descriptive text of the uploaded image. The process then ends until
a new image upload is initiated.

Preconditions Inputs Output

1) The trained image captioning
model is available

2) Preprocessed data is available in a
format compatible with the model.

1) Image Upload: A user-uploaded
image that the system will process
to generate a caption.

1) Caption: The descriptive text
produced by the model that
describes the content of the
uploaded image.

2) Error Message: If the uploaded
image is not in PNG format, an
error message is returned to the
user.

Key Variables

Name How it’s used Data Type

‘Model’ The image captioning model loaded into string (filepath) - file paths are passed

66

memory for generating captions. as strings

‘GeneratedCaption’ The initial caption produced by the
model before any formatting is applied.

string

‘FormattedCaption’ The final version of the caption after it
has been processed for readability,
which is then presented to the user.

string

Link to success criteria

This covers parts of success criteria 8 (Image capture and captioning) and 10 (Accuracy)

67

SceneSwitcher.cs Description

public void emotionDetection()
 {
 SceneManager.LoadScene(sceneName: "Emotion Detection");
 }
 public void objectDetection()
 {
 SceneManager.LoadScene(sceneName: "Object Detection");
 }
 public void Splash()
 {
 SceneManager.LoadScene(sceneName: "Splash");
 }
 public void Settings()
 {
 SceneManager.LoadScene(sceneName: "ExampleScene");
 }

This script is part of a user interface in a Unity
application that allows users to navigate between
different scenes, each providing a unique functionality.
The script contains four public functions, each linked to
a different button within the application. When a user
presses one of these buttons, the corresponding
function is called, executing a scene change within the
Unity environment.

Preconditions Inputs Output

1) The Unity application has multiple
scenes created and named
correctly: "Emotion Detection",
"Object Detection", "Splash", and
"ExampleScene".

2) Each function is correctly hooked
up to its respective button within
the Unity Editor.

1) Button Press: The user interaction
that triggers the function calls.
There is no data input to the
functions themselves, as they are
simply called in response to the
user's action.

1) Scene Change: The visible output
is the new scene that the
application navigates to when a
function is called.

Link to success criteria

This covers parts of success criteria 2 (User interface design), 5 (Home screen functionality) and 11 (Ease of use). For a project
to be successful, UI and page navigation should be easy and seamless, which is what this script aims to acheive

Algorithm Validation

Internet connection validation
For the image captioning to work, a screenshot must be taken from the unity application and
sent to an external python server to be processed, this is because as of my knowledge,
there are no useful image captioning models that work within Unity and if I were to train my
own, importing and converting to a Unity-compatible format would be very difficult and take a
lot of time, so instead I will be processing externally. For this to work, the device must
maintain a constant internet connection.

In order to do this, I will be making a call to a function every few seconds that attempts to
ping Google’s public ip address (8.8.8.8). If the ping is successful, the application will
continue as normal, indicating that the device is connected to the internet, however if the
ping fails, it is likely that device is not connected to the internet, or has a very weak
connection. In this case, I will disable the image captioning button and display a small error
message in the corner of the screen, telling the user to connect to the internet. This
validation ensures that the user can enjoy the full experience of the program, without
experiencing connection errors from the server, which may leave them confused and
unsatisfied.

Providing them with a reason why a certain function is not working is critical in maintaining
the user experience and overall useability of the application.

Below is the pseudo code that contains the logic for this functionality.

InvokeRepeating("CheckConnection", 0.1f, 0.5f);

private string ip = "8.8.8.8"; //Google’s public ip
address

IEnumerator CheckConnection()
 {
 Ping = new Ping(ip);
 float startTime = Time.time;
 while (Ping.complete == false)
 {
 yield return null;
 if (Time.time - startTime > 4.0)
 {
 connected = false;
 captionButton.enabled = false;
 Debug.Log("Not Connected");
 yield break;
 }
 }
 connected = true;
 captionButton.enabled = true;
 Debug.Log("Connected");
 }

The ‘InvokeRepeating()’ function keeps calling a
function every n seconds until stopped.

For this application, The “CheckConnection”
coroutine is called every 0.5 seconds where it
attempts a ping and starts a ‘timer’.

If the timer exceeds 4 seconds, it can be deemed that
the connection is either too slow or has failed.

When this happens, the button for image captioning
is disabled and an error message is logged in the
console.

This function will be called again and again until the
application is closed.

If the connection comes back online and works, the
image captioning button is re-enabled and
‘connected’ is logged in the console.

68

Touchscreen input validation
My project will be primarily a mobile applicaiton, which means that the sole input of the user
will be the touchscreen and various buttons. This approach inherently limits the scope of
input types, effectively simplifying the validation process as users cannot input data through
traditional means such as text entry. Validation in this scenario focuses on recognizing valid
touch interactions, distinguishing between intentional touches on actionable buttons and
accidental or non-targeted touches elsewhere on the screen. The application can accurately
determine the intent behind each touch, ensuring that only deliberate and correctly executed
touches trigger corresponding actions within the app. This method of input validation
enhances user experience by minimizing errors and ensuring that the application responds
promptly and accurately to user commands, maintaining a streamlined and intuitive
interface.

Image caption validation
Upon confirming internet connectivity and user initiation (through a button press), the
application proceeds to capture a screenshot. Before capturing, it temporarily disables UI
elements that should not be included in the screenshot, ensuring that only the relevant
screen content is captured. This meticulous preparation step is vital for maintaining the
relevance and purity of the screenshot data sent for captioning.

The captured screenshot is then encoded into PNG format and packaged into a ‘WWWForm’
object as binary data. This step is critical for converting the screenshot into a format that can
be transmitted over the network and understood by the server. The use of a well-defined
content type ‘(image/png)’ further validates the data by specifying the format explicitly to the
server, ensuring the server can correctly process the received image.

The application then initiates a POST request to the server, including the screenshot data.
Upon receiving a response, it conducts a basic validation check to ensure the request was
successful. If the upload fails, an error is logged, and no further action is taken, effectively
preventing invalid data from proceeding through the system. For successful uploads, the
server's response, presumably a caption in JSON format, is directly displayed to the user.
This direct use of the server's response without modification ensures that the validation
responsibility is primarily on the server side, which is expected to return correctly formatted
and meaningful captions.

Finally, the application re-enables previously disabled UI elements and updates the UI to
reflect the received caption, thereby completing the validation loop. This step ensures that
the user is provided with immediate, visible feedback based on the validity of the data
exchange process.

69

Iterative Development Test Data

Iteration 1
The main focus for iteration 1 will be the camera output and the initial set up and imports for
the AI models. This will perhaps take the most time as it will require the greatest amount of
research. The tests will be focused on the app’s basic functionality such as camera output,
face detection and iphone deployment.

Test
num.

What is being
tested

Priority Input Expected output Justification for this data

1 Camera appears
on screen and
updates in real
time

1 Device
webcam

Live feed of camera
on screen

This is the most crucial part of
the project – if the user cannot
see what the camera is seeing
then there will be no
functionality to the rest of the
project.

2 Bounding box
around detected
faces

1 Device
webcam

Coloured box being
drawn around the
face, mapped by
calculating
coordinates of face
corners and adding
padding to
accommodate

In order for the face detection
functionality of my project to
work, I will need to make sure
that there are bounding boxes
that display whether or not
there are faces in frame. This
will allow the processing of
emotion detection.

3 Confidence
rating on face
detection
bounding box

2 Device
webcam +
detected face
Mat

Float between 0 to 1
that is the confidence
rating from the AI on
its certainty that the
bounding boxes are
bounding around a
face where 1 is
100% certain and 0
is 0% certain

This is not critical to the
program, although it is a great
feature to have as with the
confidence rating, we are able
to omit certain detections that
fall below the threshold,
meaning that we will get less
false positive errors throughout
the app. Additionally, being
able to visually see how
accurate it is will provide a
greater insight into the
performance of the AI model

4 Second
bounding box,
with detected
emotions, colour
coded

1 Device
webcam + list
of detected
faces

Inner bounding box,
that displays the
detected emotion as
a text that follows the
person’s face, also
colour co-ordinated
so that each different
emotion is

This is needed as the core
functionality of my project,
before all else is an emotion
detection app AI, and thus the
ability to detect emotions is
crucial – This would not be
possible without the face
detection.

70

correspondent to a
different coloured
bounding box

5 Confidence
rating on the
emotions
detected by the
AI

2 Detected
emotion +
bounding box

Float between 0 to 1
that is the confidence
rating from the AI on
its certainty of the
prediction of the
person’s emotion,

See Test num. 3

6 Ability to detect
multiple faces

2 Device
webcam +
FaceDetection
AI

Multiple different
bounding boxes for
each detected face,
along with their
confidence rating
and detected
emotion for each

This is fairly important as there
will often be more than one
person in frame when pointing
the camera at someone,
especially in a public
environment, so it is important
to be able to process multiple
different objects
simultaneously.

7 Resizing quad
dependent on
screen size

3 Device screen
width + height,
Webcam
resolution

Quad should scale
adequality with
screen size and
maintain aspect ratio

This is not heavily important to
the functioning of the program,
but to ease useability and
prevent cropping and issues,
this feature should be
executed well

8 Ability to switch
between
cameras

1 List of device
cameras,
switch camera
button

When button is
pressed, program will
cycle through the
available cameras,
skipping those that
are unnecessary,
such as ultrawide

This is very important as the
end-user will most likely want
to be able to use the program
for the front and rear camera of
their phone and the ability to
seamlessly switch between
them will increase the quality
and useability of the program.

9 Switch Camera
button
disappears
when only one
camera on
system

2 List of device
cameras

If there is only one
camera, such as on
a laptop, the switch
camera button
should be disabled

This is not critical but it is
important as the switch camera
button will be useless to a user
who is using a device with only
one camera – this is because it
will call a function to cycle
through cameras, yet there are
none to cycle through, so it will
only cause the screen to lag
slightly.

71

10 Auto-Rotate
scale camera

2 Device
orientation

Camera matches
device orientation
seamlessly

This is important as many
users like to use the camera in
portrait, while others in
landscape, so in order to
maximise accessibility, there
needs to be functionality to
switch between both.

11 iPhone
Deployment

1 n/a The application runs
and works when built
on an iphone using
xCode for
deployment

My application is aimed to be
accessible via a mobile phone.
In order to test this, I must be
able to build and use the
application externally on my
phone.

72

Iteration 2
This iteration introduces image captioning, which requires extensive amounts of research
and programming. The captioning will likely take place via an external python server, which
will result in lots of extra code. I will also program the internet connection validation
subroutine.

Furthermore, I will also introduce YoLo object detection as an additional features in this
iteration, should it be easy and I have the time.

Test
num.

What is being
tested

Priority Input Expected output Justification for this data

1 On-screen face
counter

1 Device
webcam +
detected
faces

Integer displaying
number of faces in
real-time

This will aid in accessibility and
allow the user to gain a
knowledge of the estimated
number of people in the image

2 YoLo object
detection

3 Device
webcam

Coloured boxes are
drawn around
different objects, and
mapped by
calculating the
coordinates of each
object and assigning
a label to them.

The YoLo object detection is
an extra feature within this
project. It is important that this
functionality works well,
however not critical to the
application as this is not going
to be the primary focus.

3 Splash
screen/scene
switcher

1 N/A The splash screen
will allow the user to
choose which
functionality they
would like to use in
the app, whether it
be emotion/face
detection, or a
general-purpose
object detection AI.

This is quite important as in
order for the user to navigate
the application, they need a
splash screen that will allow it.
The splash screen should be
the one the loads up when the
user opens the application.

4 Check internet
connection

2 N/A If there is an internet
connection, debug
“connected” if there
is no connection, the
screenshot button,
when pressed will
show a “not
connected to the
internet” text instead
of the caption.

This is needed as the image
captioning part of the project is
hosted on a server and
therefore an internet
connection is needed. If there
is no connection, pressing the
button will try to send outbound
connections and return errors,
therefore by disabling this, we
are able to reduce any
unnecessary code execution,
thus optimizing the code.

73

5 Image
Captioning

1 Send
Screenshot
button

A small delay, then a
message in the
middle of the screen
displaying an AI
generated caption of
the camera feed

This is the main part of
iteration 2 that took me the
most time to implement. This is
one of the key aspects in my
project. Someone perhaps with
visual problems, is able to
have the image in front of them
described, and then, in a future
iteration, this can be coupled
with a text-to-speech system
so that the caption is spoken
aloud to the user.

6 Home screen
button
functionality

2 ‘home’ button Takes the user back
to the splash screen

This is so that, if they wanted,
the user can return to the
splash screen and choose a
different functionality to use for
the application

7 Image resolution 3 Device
camera

High resolution, but
doesn’t make the
program slow

This is so that the user can
have a reasonable experience
when using this app and also
be able to distinguish the
camera feed at a high
resolution.

8 Aspect
ratio/rotation

2 Device
orientation

Correctly displayed
output when using
the application

This is so that the image is
consistently upright when
using the program

9 iPhone
deployment

1 n/a The application runs
and works when built
on an iphone using
xCode for
deployment

This will be tested at each
iteration in order to ensure that
during development, no build
errors occur which may cause
the application to fail when
deploying to an iPhone.

74

Iteration 3
This iteration will focus on UI overhaul and useability of the project, where I will develop the
Text-To-Speech system, allowing the user to hear aloud the generated caption, along with
creating eye-catching and easy-to-follow navigation and UI buttons, with a settings page to
provide customisation to the TTS system.

Test
num.

What is being
tested

Priority Input Expected output Justification for this data

1 On-screen face
counter UI
updating

2 Detected
faces

Integer displaying
number of faces in
real-time on a grey
background

This will aid in useability and
promote a more user-friendly
readable interface

2 Image caption
on grey
background

2 Image
Captions

Grey background
that the captions are
displayed on so the
user can see clearly

The YoLo object detection is
another key aspect of this
project. It is important that this
functionality works well.

3 Splash
screen/scene
switcher UI
Buttons

3 touchscreen The splash screen
will allow the user to
choose which
functionality they
would like to use in
the app, whether it
be emotion/face
detection, or a
general-purpose
object detection AI.

This is to allow the user to
navigate the application. They
need a splash screen that will
allow it. The splash screen
should be the one the loads up
when the user opens the
application.

 4 Settings/Voice
Settings page

1 Settings Page
button

Opens the settings
scene for the TTS
functionality

This is needed as the captions
will be read aloud through a
TTS system. This should be
customizable by the user in
order to tailor to their needs
and preferences

5 Caption
Text-To-Speech

1 TTS button Upon pressing the
button, the
application will read
out the displayed
caption out loud, in
the voice/setup done
by the user

This is one of the key features
of iteration 3 and the project
itself, which aims to assist
those with visual impairments
by providing them with a new,
audible way of viewing their
surroundings using AI.

6 Clear Captions
button

2 Clear
Captions
button

When this button is
pressed, any caption
loaded and displayed
on screen is cleared
to provide a clearer
view of the screen.

This is important as if the user
wants to focus more on the
camera output and facial
expressions, the caption can
get in the way, so there is a
button to get rid of this.

75

7 ‘Cancel Upload’
functionality

2 ‘Cancel
upload’ button

When this button is
pressed, the caption
request is cancelled
and the UI elements
re-appear on screen

This is important as if the client
has a very slow internet
connection, this process can
be tedious and boring,
therefore they should have an
option to cancel this operation
on request.

8 ‘Loading’ icon
for image
captioning

2 Image caption
button

When the image is
being processed and
request is sent to
server, animated icon
starts playing to
indicate it is being
processed.

The loading icon will indicate to
the user when the image is
being captioned, that way they
aren’t confused about the lack
of UI and functionality when
the button is pressed.

9 TTS
customisation

2 ‘Settings’
Page

The user will have
the ability to
customise the speed,
pitch, and volume of
the Text-to-Speech
voice

This will help the user have a
more personalised experience
within the app, which is the
primary focus for iteration 3

10 iPhone
deployment

1 n/a The application runs
and works when built
on an iphone using
xCode for
deployment

This will be tested at each
iteration in order to ensure that
during development, no build
errors occur which may cause
the application to fail when
deploying to an iPhone.

76

Post Development Test Data

Test
No.

Aspect being
tested/Link to
success criteria

Justification How to perform test Type of
test
(valid,
invalid,
boundary
)

Expected
result

Actual
result

Evidence
(screensh
ot,
screencas
t etc)

1 A title
page/main
menu is loaded

Succcess
criteria points
#2 and #5

(User interface
design)

(Home screen)

Ensuring the title
page/main menu
loads correctly is
crucial for providing
users with a clear
starting point and
navigation options,
enhancing their
overall application
experience.

Start the application Valid App displays
the home
splash screen

2 Main menu
should allow
the user to
navigate to
‘emotion
detection’
scene

Succcess
criteria points
#2, #5 and #11

(User interface
design)

(Home screen)

(Ease of use)

Testing the main
menu's navigation
to the 'emotion
detection' scene is
essential for
ensuring users can
access core features
seamlessly,
improving usability
and engagement
with the
application.

Press ‘emotion
detection’ button in
home screen

Valid App displays
the ‘emotion
detection’
scene

3 Main menu
should allow
the user to
navigate to
‘object
detection’
scene

Succcess

Testing the main
menu's navigation
to the ‘object
detection' scene is
essential for
ensuring users can
access core features
seamlessly,
improving usability

Press ‘object
detection’ button in
home screen

Valid App displays
the ‘object
detection’
scene

77

criteria points
#2, #5 and #11

(User interface
design)

(Home screen)

(Ease of use)

and engagement
with the
application.

4 Main menu
should allow
the user to
navigate to
‘settings’
scene

Succcess
criteria points
#2, #5 and #11

(User interface
design)

(Home screen)

(Ease of use)

Testing the main
menu's navigation
to the ‘settings'
scene is essential
for ensuring users
can access core
features seamlessly,
improving usability
and engagement
with the
application.

Press ‘settings’ button
in home screen

Valid App displays
the ‘settings’
scene

5 Camera view
appears when
in the ‘emotion
detection’
scene

Success criteria
points #1

(Camera
functionality
when user
opens app)

Verifying that the
camera view
appears in the
'emotion detection'
scene is vital for
enabling users to
capture images in
real-time, which is
fundamental to the
functionality and
user interaction
with the
application.

Start the ‘emotion
detection’ scene

Valid App displays
the output of
the camera

6 Camera
functionality
within the
'object
detection'
scene

Success criteria
points #1, #4

Verifying camera
functionality and
integration within
the object detection
scene to ensure that
the app can
effectively use the
camera to identify
and categorise

Start the ‘object
detection’ scene

Valid App displays
the output of
the camera

78

(Camera
functionality
when user
opens app)

(Object
detection)

objects in real-time,
a core feature that
must perform
reliably for the app's
intended purpose.

7 Display of
facial
recognition
feature in the
'emotion
detection'
scene

Success criteria
points #1, #3

(Camera
functionality
when user
opens app)

(Identification
of people in
camera's
view/facial
recognition)

Demonstrating the
display and
functionality of the
facial recognition
feature in the
emotion detection
scene to ensure it
operates correctly
within this context,
accurately
identifying and
analysing facial
expressions for
mood assessment.

Start the ‘emotion
detection’ scene and
point camera at
someone’s face.

Valid App displays a
bounding box
around faces
and prints the
detected
emotion close
the them.

8 Objects listed
in the 'object
detection'
scene

Success criteria
points #4, #8

(Object
detection)

(Image capture
and
captioning)

Turn on an test the
object detection
scene to verify that
the feature works
seamlessly,
enhancing the
educational and
accessibility aspects
of the app.

Press ‘object
detection’ button on
homescreen

Valid Object
detection
scene loads
and displays
object names
besides their
bounding
boxes.

9 Responsivenes
s and fluidity of
the live camera
feed

Assessing the
responsiveness and
fluidity of the live
camera feed for
real-time

Starts either the
‘emotion detection’ or
‘object detection’
scene, as both use the
same logic for the live

Valid Camera is fluid
and responsive
~20 fps

79

Success criteria
points #1, #9

(Camera
functionality
when user
opens app)

(Responsivenes
s - 20fps
consistent
feed)

interaction to
ensure the
application can
handle streaming
video at a
consistent frame
rate, critical for a
smooth and
engaging user
experience in
features like live
emotion detection
or object
recognition.

camera feed

10 Accuracy of
facial
expression
analysis for
mood
recognition

Success criteria
points #3, #6,
#10

(Identification
of people in
camera's
view/facial
recognition)

(Mood
recognition
based on facial
expressions)

(Accuracy)

Validating the
accuracy of facial
expression analysis
for mood
recognition to
ensure the
technology correctly
interprets a wide
range of human
emotions, pivotal
for applications
relying on
emotional
intelligence for
interaction or
feedback.

Start ‘emotion
detection’ scene and
point camera at
someone displaying
different moods

Valid ‘Mood’ text
updates in real
time and
accurately
detects a
person’s
emotion

11 User interface
intuitiveness
and simplicity

Success criteria
points #2, #11

(User interface
design)

(Ease of use)

Ensuring the user
interface is intuitive
and simple,
facilitating ease of
use for a wide
demographic of
users, including
those who may not
be tech-savvy, to
reduce the learning
curve and enhance
the overall user

Start the application
and look at the UI
elements on screen

Valid UI elements
appear on
screen. The UI
elements
should be
intuitive and
simple to
follow from the
point of view
of someone
who may not
be confident

80

engagement with
the app.

using tech.

12 Customization
of
text-to-speech
settings in the
'settings' scene

Success criteria
points #7, #12

(Text-to-speech
output for
processed
attributes)

(Variable
text-to-speech
voice
pitch/volume/s
peed)

Customising
text-to-speech
settings in the
'settings' scene to
validate the range
of personalisation
options available to
users, ensuring they
can adjust voice
pitch, volume, and
speed to suit their
preferences and
needs, enhancing
accessibility and
user experience.

Vary the sliders and
voice carousel in the
settings page until
preferred TTS voice is
as desired

Valid User is able to
change the
voice, volume,
pitch and
speed of TTS
speech.

13 Object
detection
accuracy and
performance

Success criteria
points #4, #10

(Object
detection)

(Accuracy)

Checking the
accuracy and
performance of
object detection
under a variety of
conditions to
validate the
technology's ability
to recognise and
categorise objects
reliably, which is
central to the app's
functionality and
user engagement.

Turn on ‘object
detection’ scene and
evaluate performance
when pointing at
many objects in
different
environments

Valid Object
detection
should be
accurate and
remain highly
responsive,
even when
many objects
are in view

14 Responsivenes
s of the main
menu and
navigation
elements

Success criteria
points #2, #9,
#11

(User interface
design)

Testing the
responsiveness of
the main menu and
navigation elements
to ensure that users
can quickly and
easily access
different parts of
the application
without frustration,
critical for usability
and user
satisfaction.

Press different
buttons and evaluate
the response time and
loading time of
different scenes and
processing.

Valid Application
should respond
to user inputs
quickly and
with minimal
delay

81

(Responsivenes
s - 20fps
consistent
feed)

(Ease of use)

15 Evaluation of
mood
recognition
under various
lighting
conditions

Success criteria
points #6, #10

(Mood
recognition
based on facial
expressions)

(Accuracy)

Evaluating the
accuracy of mood
recognition under
various lighting
conditions to ensure
the technology is
versatile and
reliable in different
environments,
essential for a
feature that relies
on visual cues for
emotion detection.

Attempt to identify
different moods in
low light, normal light,
and very bright light.
Evaluate if the AI is
able to distinguish
between moods such
as happy/sad/angry

Boundary In low light,
emotion
recognition
may fail or
output
incorrect
emotions due
to a lack of
clarity in the
image

16 Ensuring app
stability and
performance
during
extended use

Success criteria
points #9, #11

(Responsivenes
s - 20fps
consistent
feed)

(Ease of use)

Monitoring the
application's
stability and
performance during
extended use to
identify any
potential memory
leaks, slowdowns,
or crashes that
could detract from
the user experience,
aiming for
robustness and
reliability over time.

Run the application
for a long time,
preferably over 10
minutes, with
debugging
information on
screen, monitoring
device temperature,
memory usage and
battery usage.

Boundary Application
should manage
resources
efficiently,
without any
memory leaks
or bottlenecks.

17 Accuracy of
text captions
generated for
captured
images

Success criteria
points #8, #10

(Image capture
and

Assessing the
accuracy of text
captions generated
for captured images
to ensure they are
contextually
relevant and
precise, enhancing
the value of the
app's image
recognition and

Take a wide variety of
different images in
various environments,
evaluating the
response and
accuracy of the
captions

Valid Captions
should remain
fairly accurate,
describing a
wide range of
given
scenarios.

82

captioning)

(Accuracy)

captioning
capabilities for
educational,
accessibility, or
entertainment
purposes.

18 User
experience and
interface
consistency
across
different
devices

Success criteria
points #2, #11

(User interface
design)

(Ease of use)

Verifying the user
experience and
interface
consistency across
different devices,
ensuring that the
application provides
a seamless and
uniform experience
regardless of screen
size or resolution,
catering to a wide
range of users.

Build and test on a
variety of different
iPhones with different
processing power and
resolutions,
evaluating the UI and
scaling for each
device. (e.g iPhone 7,
iPhone 11, iPhone 5)

Valid Application UI
should scale
appropriately
depending on
size and
resolution of
device.

19 Functionality
and accuracy
of the facial
recognition
feature in
crowded
scenes

Success criteria
points #3, #10

(Identification
of people in
camera's
view/facial
recognition)

(Accuracy)

Testing the
functionality and
accuracy of the
facial recognition
feature in crowded
scenes to evaluate
its ability to
distinguish and
analyse multiple
faces
simultaneously,
crucial for
real-world
applicability and
user trust.

Prepare an image of a
large crowd with
visible faces and asses
the functionality
when the AI is given
large amounts of data

Boundary AI should be
able to
recognise the
majority of the
faces in the
image,
however may
reach its limit
and only detect
up to a specific
amount.

20 Evaluation of
app's
adaptability to
different
screen sizes
and resolutions

Assessing the app's
adaptability to
various screen sizes
and resolutions
ensures a consistent
and optimal user

Build and test on a
variety of different
iPhones with different
sizes and resolutions.
(e.g iPhone 7, iPhone
11, iPhone 5)

Valid Application
should scale
appropriately
depending on
size and
resolution of

83

Success criteria
points #2, #11

(User interface
design)

(Ease of use)

experience across
different devices.

device.

21 Testing the
app's
performance
and
functionality
without
internet
connectivity

Success criteria
points #1, #11

(Camera
functionality
when user
opens app)

(Ease of use)

Verifying the app's
functionality
without internet
connectivity
ensures critical
features remain
accessible offline,
enhancing usability
and reliability.

Turn off device WiFi
and evaluate
useability and
features. In particular,
ensure the image
captioning is turned
off

Erroneous
and Valid

Image
captioning
button
disappears and
remaining
features work
perfectly.

22 Testing voice
pitch
adjustment in
text-to-speech
for user
personalization

Success criteria
points #7, #12

(Text-to-speech
output for
processed
attributes)

(Variable
text-to-speech
voice
pitch/volume/s
peed)

Assessing voice
pitch adjustment in
text-to-speech
validates
personalization
features.

In the settings page,
adjust the TTS slider,
type in sample text
and press ‘test’ to
hear the audio.

Valid Users can tailor
audio outputs
to their
preferences
and test this.

23 Responsivenes
s and

Evaluating the UI's
responsiveness and

Within the object
detection, or emotion

Boundary During peak
processing

84

effectiveness
of the user
interface
during peak
processing
tasks

Success criteria
points #2, #9,
#11

(User interface
design)

(Responsivenes
s - 20fps
consistent
feed)

(Ease of use)

effectiveness during
peak processing
tasks ensures the
application remains
user-friendly and
efficient under
heavy load
conditions.

detection script,
include many
faces/objects which
creates many
bounding boxes and
evaluate the
responsiveness.

tasks, the app
should slow
down and
reduce in
responsiveness
due to a
bottleneck in
system
resources

24 Test the
text-to-speech
feature with
the maximum
and minimum
allowed pitch,
volume, and
speed settings.

Success criteria
points: #7, #12

(Text-to-speech
output for
processed
attributes)

(Variable
text-to-speech
voice
pitch/volume/s
peed)

Evaluate the limits
of text-to-speech
customization
settings to ensure
that extreme values
do not cause
unintelligibility or
application errors.

Within the settings
page, turn the slider
to the maximum and
minimum value, then
test the audio.

Boundary Audio should
be clear and
easy to
understand, at
an acceptable
volume.

85

Useability Testing Plan

I have also planned a questionnaire that I will send to 5 users based on the target audience,
including my stakeholders:

86

Iterative Development

Iteration 1 Iteration 2 Iteration 3

● Device Camera input
● Convert Camera texture to be

used in OpenCV format
● Import OpenCV
● Import OpenCV library of

pre-trained AI models
● Set up face-tracking
● Draw bounding box
● Emotion Recognition AI import
● Change Camera Button
● Camera/UI positioning for

different devices
● Face counter

● Add Age/Gender detection
● Object detection system

system also (new scene)
(yoloV2 lightweight)

● Variable confidence metre
● Button to send an image to the

Python Flask server for Image
captioning AI

● Custom image import
● Voice commands?
● UI Overhaul
● Text-To-Speech Button

I am going to use the table above to split my prototype 1 into 3 iterations, starting
with the key, main features that will be the defining skeleton of my project, and slowly

adding features and parts to the project that will be key for later on during the
development. Features in Green are considered ‘essential’, features in Orange are

considered ‘Key but not needed’, and features in Red are considered ‘optional
(dependent on time constraints)’. Any features that I would like to include, that may

not make it into prototype 1, will be considered for future prototypes

87

Iteration 1 - Date 25/07/2023

Aims for this iteration

The aim for this iteration is to develop the ‘skeleton’/backend of the project, this involves
importing and fine-tuning the built-in AI models that are included in the OpenCVforUnity
package. By the end of this iteration, I want an adequately positioned central plane that
displays a camera feed, with functional face-tracking and emotion-detection ability, along
with the option to change the camera type (e.g., front/back). This means that I needed to
change my top-down design to accommodate this change so that I could continue with the
development of this project smoothly.

Below are the functions that I will be working on for this portion of the project:

88

The functions that are included in the top-down design, make up the key aspects of this
project, which include the input, process and output, which is critical to a visualization AI.
The other iterations throughout this project will rely heavily on the functions included in
iteration 1, which is why it is important that they are completed and fine-tuned first.

For this iteration, I will be using basic unity UI, as the design and style of the program will be
implemented in later iterations throughout the project, due to its lower level of priority.
Additionally, this includes the age/gender recognition AI model. I may later incorporate this
as a separate model, or in a later prototype, import or train a custom model myself that
includes the emotion, age and gender functionality all in one, to simplify the process, rather
than use 2 separate models for this.

Summary of aims:

● Set up/import OpenCVforUnity
○ Use OpenCV DNN (deep neural network)
○ Import DNN models (face detection, emotion recognition)

● Camera input
○ Ensure the camera is centred to the screen and the aspect ratio is

maintained, with variable sizing, dependent on the screen/camera type.
○ Set up textures and colour Mats through the camera view.

● Initialize pre-trained models through OpenCVLibrary
○ FaceDetector
○ FER (FacialEmotionRecogntion)

● Process Camera texture for AI processing.
● Output detected faces using bounding boxes.
● Output emotions with a bounding box.
● Change camera button.

89

Functionality that the prototype will have:

Within this iteration, I hope to achieve the following parts of my success criteria:
(1, 3, 6, 9, and 10)

Extra functionality to be included in this iteration:
● Ability to cycle through onboard device cameras
● Auto-Rotate functionality, allowing the user to use the app comfortably, however they

please
● Face counter, a UI text that displays the number of detected faces on the screen
● Confidence view to show the user the level of accuracy/confidence the AI has

detected

90

Annotated code screenshots with description
Initial set-up:

Importing OpenCV is key as this is going
to be the backbone to my project and the
primary library used to execute and
process AI functions and models in C#,
instead of python or C++.

OpenCV comes with many unnecessary
packages, examples and models, many
of which we can delete later, or choose
to not import them manually.

For now, I am going to import the whole
library for simplicity.

91

2 .onnx files are imported into the
‘streamingAssets’ folder of the project. These are
assets that are loaded when needed from unity.
The files that are imported are pre-trained
openCV AI models, each designed for a separate
function, one is used for face recognition, while
the other is used for emotion recognition. Without
these models, the AI will have no reference as to
what it is trying to identify or predict.

These models take an input that is a texture of
size 320x320 with greyscale color. This allows
quick and accurate processing. This means that
later, we will need to ‘pre-process’ our camera
image to match this criteria for the project.

Additionally, I imported a quad named “main
screen”. This quad currently has no texture.
However, when the main camera starts rendering,
a texture will be mapped onto the quad allowing a
direct view of the camera and will show all the
outputs on screen. I have placed this as a child of
the main camera.

Variable initialization:
EmotionDetectionScript.cs

92

texture - This Texture2D variable will be used towards the camera initialization. The
webcamTexture will be mapped onto the texture variable. This is going to be updated every
frame in update() and will be attached to the quad gameObject. This means that the
webcam’s view will be visible on the quad.

bgrMat - OpenCV uses BGR material format, which is not the same as unity’s mat format.
This means that at some point, I will need to convert the unity material to an OpenCV
compatible bgr material

FER/faceDetector - This is a separate script included in openCV that will take the inputs
and parameters, pass them through the pre-trained model, and form an output.

scoreThreshold - This is the float variable that will determine how confident the model must
be in order to produce a valid output for Face Detection and FER. 0.9f is the default value -
this means that the model is 90% confident in its analysis.

nmsThreshold - non max suppression. This is a technique used in numerous computer
vision tasks. It is a class of algorithms to select one bounding box out of many overlapping.
The higher the variable score, the more accurate the bounding box will be. Due to face
Detection being fairly basic, we can keep this score relatively low, to keep processing
speeds high. (src:
https://learnopencv.com/non-maximum-suppression-theory-and-implementation-in-pytorch/)

currentCameraIndex - many devices have more than one camera, During the initialization
of the program, the script will detect the number of cameras on the device and assign them
all an index. currentCameraIndex will keep track of which camera is currently turned on.
Many devices also have unnecessary cameras, such as 0.5x zoom or telephoto, that need to
be indexed and skipped when cycling through the available cameras.

faceCount – integer that keeps track of the number of faces detected on screen

Public variables are displayed
in the inspector as
shown. This will allow me to
change the values of the
variables easily throughout
development and testing.

93

https://learnopencv.com/non-maximum-suppression-theory-and-implementation-in-pytorch/

Start():
EmotionDetectionScript.cs

As soon as the program begins, the script checks whether the device has more than one
camera type. If so, it will keep the ‘switchCameraButton’ active, otherwise it will turn it off.
This is because the button will be useless since there are no other cameras to switch to and
so the function will not need to be called.

After this check, the SwitchCamera() function will be called - details below.

SwitchCamera():
EmotionDetectionScript.cs

The function will cycle through the available cameras, skipping the ones labeled
“UltraWideAngle” and “ColorAndDepth”. The UltraWideAngle on iOS is commonly known as
the 0.5x zoom camera. Furthermore, the ColorAndDepth camera is the standard camera at a
higher resolution and colour depth. We can omit this – this is because we do not need a
high-resolution output due to the nature of this project, although I am going to consider
adding it in a settings page, based on the user’s display preferences.

After selecting the next available camera, the webCamTexture will be initialized and linked to
the texture that the webcam can see. Then we start the camera using
webCamTexture.Play(); - This means that camera is turned on and it’s texture is being
captured.

At the end of the function, a debug statement is included for identifying the camera type and
index and then the “InitializeWhenReady()” Coroutine is started.

94

At this point, I was met with an error while building the app in unity, prompting me to update
Xcode for compatibility.

After updating Xcode, my app no longer builds and shows a GameAssembly issue.

This PhaseScriptExecution error was caused due to a mismatch in versions of Xcode and
unity. After upgrading my Unity editor to version 2022.3.10f1, my app began to build
successfully.

When running the app to test the camera functionality, on an iphone, I get an error where the
front and rear camera are overlapping to cause a visual error, where it is impossible to see a
clear image as shown below:

In order to fix this, I need to add functionality that will ensure one camera turns off before the
next one is initialised.

95

EmotionDetectionScript.cs

This new updated function starts by checking if any webcams are playing and if the
webcamTexture variable has a placeholder. If there are, then it will stop the camera. This is
important as without this, there will be significant errors during camera switching, which will
cause the horizontal lines of one camera and vertical lines of the next camera to overlap, so
we need to turn them off, before turning on the next camera and assigning the texture.

InitializeWhenReady():
EmotionDetectionScript.cs

This coroutine starts by waiting for the webcamTexture to initialize and start. This is because
the code execution will be faster than the camera turning on, therefore without the yield
WaitUntil(), the program will try to assign and reshape different textures that don’t exist,
which is an indicator that unity is trying to work on variables that haven’t loaded yet or with

96

no data. I found this out when testing the camera functionality. Without line ‘91’, the screen
output is very similar as before, which indicates a similar issue:

Due to this error occurring,
where the image is not
displaying properly, I turned
the function into an
enumerator and added a
‘yield waituntil()’ function in
order to give the CPU time to
catch up with the camera’s
image, which fixed the
problem and outputted the
following:

After waiting for the camera to turn on, the main texture variable is assigned the camera
texture – this is the texture that will be mapped onto the quad which will allow the user to see
the camera’s view which is what is shown above. The bgrMat material is also initialized –
this is needed for the OpenCV models to process since we will be using this format. The
material is assigned a Cv.Type.CV_8UC3 material type – this is defined as an 8-bit unsigned
integer matrix with 3 colour channels (we will assign these channels to be BGR (blue, green,
red)).

After initializing the materials and textures, we assign the texture to the attached renderer of
the gameObject (the quad).

97

Afterwards, the coroutine will use the width/height of the webcam, with the height/width of
the screen to determine the correct positioning and centering of the quad gameObject, to
maintain the aspect ratio and re-sizing between different devices.

In the end, the filenames of the onnx models are assigned to the model filepath strings. This
is the method the OpenCV recommend to use for loading the models into unity.

The Run() function is then called – this is in charge of initializing the AI processing scripts

Run():
EmotionDetectionScript.cs

The Run() function is fairly simple; turn on debug mode and initialize the OpenCV DNN
scripts using the thresholds, input sizes and other parameters that we’ve passed through so
that it is able to execute the models.

The built-in YuNetV2FaceDetector and FacialExpressionRecognizer script manage the bulk
of the preprocessing and postprocessing of the inputs.

Update():
EmotionDetectionScript.cs

The update function starts by setting the number of detected faces to 0 and then
WebCamTexture is converted to a Texture2D so that we can then convert the Texture2D to
an RGBA material format – this can then work well with OpenCV. This is done by setting a
new material to a variable called rgbaMat – this new material would have the height and
width of the webcam passed through, and then the material type is selected as a
CvType.CV_8UC4 – this is an OpenCV type material, consisting of and 8-bit unsigned
integer with 4 colour channels; RGBA (red, green, blue, alpha)

After converting the materials and textures to be compatible with the models, unity and
OpenCV, we apply a rotation matrix, based on the orientation of the device

98

(portrait/landscape) – This will allow us to use the device in any orientation we want, without
having the image be flipped or rotated the wrong way.

After the rotation function returns the new material, we convert it to a BGR format in order to
be used directly within the .onnx model – most OpenCV AI models require a BGR colour
material format.

Update() Continued:
EmotionDetectionScript.cs

After the conversion to BGR formats, we send the new material through the faceDetector AI
model for processing through the faceDetector.infer() function – this will return an array of
faces that it has detected.

Using this array, we use a count-controlled loop to loop through each face, updating the
number of detected faces and then send the BGR material through another AI model – this
time we send it through the emotion detector using FER.infer() This will return a list of facial
expressions, which we add to each corresponding face – this means we are able to have
multiple faces have different emotions on the screen at the same time.

We now have faces and emotions in the form of a list and we need to visualise it on screen,
the way we do this is by using the included face detection and emotion detection
visualisation functions through OpenCV which assist in drawing bounding boxes and
labelling the corresponding emotions.

Finally, we print the number of faces detected in the console – in the next iteration, I will
assign this a UI text box that will update on-screen.

When testing Update() and it’s functionality, I notice that when switching cameras, I have a
long delay and the application crashes due to thousands of argument exception errors as
seen below:

99

Upon researching this error, it was clear to me that the program was trying to execute
functions on a texture that didn’t exist. This is due to the delay in the camera initialization
and pre-processing. In order to overcome this issue, I need to introduce functionality that will
check if the camera texture has updated since the last frame and if the textures are empty
that will prevent further program executions.

EmotionDetectionScript.cs

Now, the update() function proceeds to undergo some checks to ensure that there is a valid
texture that has been applied from earlier in the InitializateWhenReady() Coroutine and also
checks if the webcam texture has a valid texture applied to it from the camera. If not, then
the function will keep looping until there is a valid texture and the webcam is on – this is
important as if the textures were not ready, there would not be anything that we can input to
the AI model to detect, which will cause a large amount of nullExceptionReference errors
from unity. As a result, we need to wait for a valid input.

100

After the checks, are complete, the texture conversions and executions can occur and result
in a smooth output with no errors.

ApplyRotation():
EmotionDetectionScript.cs

The ApplyRotation() function is called every frame through the Update() function – this is
designed to correct the rotation of the image on the screen, dependent on the screen’s
orientation – this will help correct issues when using the app landscape and portrait. A switch
case is used to achieve this.

101

OnDestroy():

EmotionDetectionScript.cs
The OnDestroy() behaviour will execute when a
scene or game ends – this serves several
purposes:

● Resource clean-up
● Release camera and device resources
● Debug mode clean-up

These are all important as this helps prevent resource leaks and ensures a proper clean-up
when the script or game object is no longer needed or is being removed from the scene.

102

Test Plan for this version

Due to the nature of my project being dependent on many different functions and inputs, I
will need to test that each of the desired outputs are displayed when the expected input is
used. To track the test data, I will be using the table below, and providing each test data with
a level of priority, (1 being high priority, 2 being mediocre priority, and 3 being low priority)

Test
num.

What is being
tested

Priority Input Expected output Justification for this data

1 Camera appears
on screen and
updates in real
time

1 Device
webcam

Live feed of camera
on screen

This is the most crucial part of
the project – if the user cannot
see what the camera is seeing
then there will be no
functionality to the rest of the
project.

2 Bounding box
around detected
faces

1 Device
webcam

Coloured box being
drawn around the
face, mapped by
calculating
coordinates of face
corners and adding
padding to
accommodate

In order for the face detection
functionality of my project to
work, I will need to make sure
that there are bounding boxes
that display whether or not
there are faces in frame. This
will allow the processing of
emotion detection.

3 Confidence
rating on face
detection
bounding box

2 Device
webcam +
detected face
Mat

Float between 0 to 1
that is the confidence
rating from the AI on
its certainty that the
bounding boxes are
bounding around a
face where 1 is
100% certain and 0
is 0% certain

This is not critical to the
program, although it is a great
feature to have as with the
confidence rating, we are able
to omit certain detections that
fall below the threshold,
meaning that we will get less
false positive errors throughout
the app. Additionally, being
able to visually see how
accurate it is will provide a
greater insight into the
performance of the AI model

4 Second
bounding box,
with detected
emotions, colour
coded

1 Device
webcam + list
of detected
faces

Inner bounding box,
that displays the
detected emotion as
a text that follows the
person’s face, also
colour co-ordinated
so that each different
emotion is
correspondent to a
different coloured
bounding box

This is needed as the core
functionality of my project,
before all else is an emotion
detection app AI, and thus the
ability to detect emotions is
crucial – This would not be
possible without the face
detection.

103

5 Confidence
rating on the
emotions
detected by the
AI

2 Detected
emotion +
bounding box

Float between 0 to 1
that is the confidence
rating from the AI on
its certainty of the
prediction of the
person’s emotion,

See Test num. 3

6 Ability to detect
multiple faces

2 Device
webcam +
FaceDetection
AI

Multiple different
bounding boxes for
each detected face,
along with their
confidence rating
and detected
emotion for each

This is fairly important as there
will often be more than one
person in frame when pointing
the camera at someone,
especially in a public
environment, so it is important
to be able to process multiple
different objects
simultaneously.

7 Resizing quad
dependent on
screen size

3 Device screen
width + height,
Webcam
resolution

Quad should scale
adequality with
screen size and
maintain aspect ratio

This is not heavily important to
the functioning of the program,
but to ease useability and
prevent cropping and issues,
this feature should be
executed well

8 Ability to switch
between
cameras

1 List of device
cameras,
switch camera
button

When button is
pressed, program will
cycle through the
available cameras,
skipping those that
are unnecessary,
such as ultrawide

This is very important as the
end-user will most likely want
to be able to use the program
for the front and rear camera of
their phone and the ability to
seamlessly switch between
them will increase the quality
and useability of the program

9 Switch Camera
button
disappears
when only one
camera on
system

2 List of device
cameras

If there is only one
camera, such as on
a laptop, the switch
camera button
should be disabled

This is not critical but it is
important as the switch camera
button will be useless to a user
who is using a device with only
one camera – this is because it
will call a function to cycle
through cameras, yet there are
none to cycle through, so it will
only cause the screen to lag
slightly.

10 Auto-Rotate
scale camera

2 Device
orientation

Camera matches
device orientation
seamlessly

This is important as many
users like to use the camera in
portrait, while others in
landscape, so in order to
maximise accessibility, there
needs to be functionality to
switch between both.

104

11 iPhone
Deployment

1 n/a The application runs
and works when built
on an iphone using
xCode for
deployment

My application is aimed to be
accessible via a mobile phone.
In order to test this, I must be
able to build and use the
application externally on my
phone.

Test Results / Evidence
Test
num.

What is being
tested

Result Input Expected output Comments Evidence

1 Camera
appears on
screen and
updates in real
time

Device
webcam

Live feed of camera on
screen

n/a Figure
1.1

2 Bounding box
around
detected faces

Device
webcam

Coloured box being
drawn around the face,
mapped by calculating
coordinates of face
corners and adding
padding to accommodate

n/a Figure
1.1

3 Confidence
rating on face
detection
bounding box

Device
webcam +
detected face
Mat

Float between 0 to 1 that
is the confidence rating
from the AI on its certainty
that the bounding boxes
are bounding around a
face where 1 is 100%
certain and 0 is 0%
certain

n/a Figure
1.1

4 Second
bounding box,
with detected
emotions,
colour coded

Device
webcam + list
of detected
faces

Inner bounding box, that
displays the detected
emotion as a text that
follows the person’s face,
also colour co-ordinated
so that each different
emotion is correspondent
to a different coloured
bounding box

n/a Figure
1.1

5 Confidence
rating on the
emotions
detected by
the AI

Detected
emotion +
bounding box

Float between 0 to 1 that
is the confidence rating
from the AI on its certainty
of the prediction of the
person’s emotion.

n/a Figure
1.1

105

6 Ability to
detect multiple
faces

Device
webcam +
FaceDetection
AI

Multiple different
bounding boxes for each
detected face, along with
their confidence rating
and detected emotion for
each

n/a Figure
1.2

7 Resizing quad
dependent on
screen size

Device screen
width + height,
Webcam
resolution

Quad should scale
adequality with screen
size and maintain aspect
ratio

Letterboxes appear on
left and right side all the
time, although the
height is fine

All
Figures

8 Ability to
switch
between
cameras

List of device
cameras,
switch camera
button

When button is pressed,
program will cycle through
the available cameras,
skipping those that are
unnecessary, such as
ultrawide

n/a Figure
1.3

9 Switch
Camera button
disappears
when only one
camera on
system

List of device
cameras

If there is only one
camera, such as on a
laptop, the switch camera
button should be disabled

n/a Figure
1.4

10 Auto-Rotate
scale camera

Device
orientation

Camera matches device
orientation seamlessly

When ported to iPhone,
it did not work in portrait
mode, it was rotated 90
degrees off to the side
and did not detect faces
when side ways

Figure
1.5

11 iPhone
Deployment

n/a The application runs and
works when built on an
iphone using xCode for
deployment

n/a Figure
1.6

All following screenshots have been captured on a working iPhone build (except Figure 1.4)

106

Figure 1.1

Figure 1.2

107

Figure 1.3

Figure 1.4 (on laptop with one camera the “Switch Camera” button is disabled)

108

Figure 1.5 (When using portrait, the screen doesn’t scale and rotate properly)

Figure 1.6 (perfectly working on iPhone)

109

Feedback from Stakeholder
My stakeholders, as explained earlier, are a mixture of potential users and tech enthusiasts
who would be using this project to help benefit their personal life or learn more about the
common use of artificial intelligence. Since many of the final features have not been
implemented yet, I have chosen to interview Aiad Tarik and Mario Prifti for their opinions on
the first iteration of prototype 1 as I didn’t find any point in interviewing Mike Parish as many
of the features that will assist in his useability will be implemented later on in the further
iterations. The 2 stakeholders will be referred to as AT and MP to indicate the answers that
they will provide.

Is the app easy to use?

MP: “I think the app is very easy to use at the moment – as soon as you start the app, you
are launched into the main screen and simply point the camera. The ‘Switch Camera’ button
is clear and well defined”

AT: “I think the app has great potential, although I believe there should be a landing screen
before the initial start-up, where the user is able to change preferences or learn about how to
use the application. Furthermore, I think that the emotion labels are very small to read and
could be particularly difficult to those who are more visually impaired than most.”

How do you feel about the accuracy of the detections?

MP: “It’s very accurate at detecting faces and emotions – I didn’t have any problems
throughout. I pointed it at a person far away and it recognised their presence”

AT: “The accuracy of the face detection is brilliant, although I believe that that confidence
threshold should be increased slightly – this is because it is much more difficult to detect
emotions than faces. And if there is a face that can be detected from far away, the emotion
will most likely be inaccurate and for this reason, I think it would be more beneficial to
compromise some low-quality faces, for higher quality emotion recognition”

How did you find the seamlessness of switching cameras?

MP: “Switching cameras was not an issue, simply a matter of pressing the button – perfect!”

AT: “No flaws whatsoever, little lag and quite smooth – I didn’t find any errors or problems
switching the cameras”

110

Are there any improvements you would recommend to the currently implemented features?

MP: “I would prefer it if the camera spans across the whole screen and perhaps allowing it to
work in portrait mode”

AT: “I think it would benefit from increasing the frame rate, as it is slightly low at the moment
– by reducing the resolution of the camera input and adjusting the code to update when the
device auto-rotates, allowing portrait mode functionality”

Changes/Fixes that I now plan to make to the design or code as a result
of testing and feedback

The main failing point for this iteration was the scale and rotation of the device – Both issues
stem from the setup of the unity scene game objects and the code – For my next iteration, I
am going to alter the ApplyRotation() function to auto-update when the screen orientation
changes, and also altering the maths from within the initializeWhenReady() function in order
to span the camera across the whole screen, while maintaining an acceptable aspect ratio.

For my next iteration, I plan to add:
● On-screen face counter
● Variable confidence meter
● Text-to-speech button
● Image Captioning

111

Evaluation
This iteration aimed to create the foundation of this project, the skeleton, if you will. By doing
so, I can now easily add or alter features within the program without the need to change the
majority of the program, It all comes down to adding and fixing, until the stakeholders and I
are content with the product. Ultimately, I believe I was successful in achieving most of the
aims for this iteration, with the exception of 1 or 2 bugs to be fixed. The goals that have been
achieved in this iteration include:

1. Device Camera input
2. Import OpenCV library of pre-trained AI models
3. Face tracking
4. Multi-face tracking
5. Confidence rating
6. Draw bounding box
7. Emotion Recognition AI import
8. Change Camera Button
9. Face counter (Console debug log)

The sections of this iteration I found most difficult would have been the set-up of the AI
models – I found this the most difficult as Unity does not have well-documented support for
artificial intelligence – the built-in Unity library for this is barracuda, although, with low
support and slow executing times, this would not fit the scale and nature of my project, due
to its complexness. As a result, I settled for an external library, OpenCVForUnity. This library
is a port of OpenCV C++ to work with c# using a library of pre-existing, pre-trained models,
such as facial recognition and emotion recognition, which is precisely what I had wanted for
this project, although it lacks many other key models that I will need such as an image
captioning model and an age/gender model. As a result, in my next iteration, I am going to
set up a Python server with these models, that will run and execute at a slower rate than the
built-in OpenCV models, providing full functionality to my project.

112

Iteration 2 - Date 03/10/2023

Aims for this iteration

The aim for iteration 2 is to further develop the backend of the project, this involves adding
more AI features to the project, bug fixing from iteration 1, and beginning to involve my 3rd
stakeholder, Mike Parish, as this iteration will tailor more towards the accessibility side of
development. I am also going to attempt to fine-tune the pre-existing AI models that have
been incorporated into iteration 1. By the end of this iteration, I want another AI functionality
for the project, preferably an object detection with a confidence threshold slider, whereby the
user is able to alter how confident the AI is before it replies with an output.

Below are some of the functions from the top-down design that I will be working on and
improving from iteration 1 during this portion of development:

113

Iteration 2 is not limited to the functions shown above as I plan to implement further
improvements and functionalities throughout development.

If I have time during this iteration, I will attempt to include AI image captioning, which is
highly ambitious due to its complexity. I will plan to do this through a python flask server as
Unity will be unable to handle the complex task of processing images and captioning.
Additionally, nearly all image captioning models for this task are designed for Tensorflow or
Pytorch, which is very difficult to implement into Unity, and for the sake of simplicity, I will be
doing the processing externally, and returning the results, in a string format to unity, where it
will be able to display the caption as a formatted text gameObject.

Finally, I aim to add a settings\pause button where the user can alter some of the program’s
functionality, such as the confidence threshold, text-to-speech volume etc.

Bug Fixing:

Before I begin adding features and continuing with development, I am going to need to fix
all/most of the bugs that were discovered from the previous iteration. This includes full
scalability of the camera on the screen. And if I have time, portrait functionality (This is not a
critical bug as I can make the app landscape mode only, although, If I have enough time, I
will attempt to introduce portrait mode logic)

EmotionDetectionScript.cs

The first thing I did in tackling the scaling problem was switch the rendering mode from
putting a texture onto the quad to creating a scalable UI gameObject that I can map the
texture onto – this means I do not have to worry about unnecessary maths and rescaling
issues since Unity will handle this for me.

114

EmotionDetectionScript.cs

I then created a coroutine, similar to InitializeWhenReady() but instead focused on capturing
the aspect ratio of the webcam and the screen size, adjusting as necessary and then
assigning the values to the aspect ratio fitter.

This aspect ratio variable will scale with the screen size, in order to prevent the letterboxes
on the sides

115

EmotionDetectionScript.cs

This now meant that I could remove the bulk of the InitializeWhenReady() coroutine as most
of it was maths related to scaling the quad gameObject, but now it isn’t needed as we have
AdjustUISizeAndPosition() to do this for us.

Summary of aims:

● Set up a home splash screen to choose between scenes
o Scenes will include Face-Emotion detection and Object detection
o User scene management and UI buttons for navigation

● Set up a face counter on-screen that measures the number of faces detected and
outputs an integer

● Import and set up the ObjectDetection scene using OpenCV’s built-in model
o Adjust Screen positioning to match the aesthetic of the rest of the project

● Set up a slider to alter the confidence threshold
o AI will only output results if it is more confident than the set threshold

▪ This is a scale from 0.00 to 1.00, where 1.00 is when the AI is 100%

confident in its prediction
● Set up a Python server to process image captioning from unity.

116

Annotated code screenshots with description

Face counter (C#)

To set up a face counter, I created a standard unity text object with the default text value
“Faces detected: ” I will update my ‘EmotionDetectionScript.cs’ to accommodate this.

EmotionDetectionScript.cs

I have initialised 1 new variable; the public faceCountText object which will be updated,
instead of debugging the number of faces in the console, this will appear on screen

117

EmotionDetectionScript.cs

At the start of each Update() call, the faceCount variable resets to 0.

EmotionDetectionScript.cs

For each face detected and inferred using the model, the faceCount variable is incremented.

EmotionDetectionScript.cs

At the end of the Update() loop, the faceCountText variable is updated to display “Faces
detected: {faceCount}”, instead of debugging the face count in the console.

118

YoLo object detection page (C#)

For this part of the project, I want to create a new scene, dedicated to YoLo object detection.

I used the same template for the new scene, called ‘Object Detection’, that I used for
‘Emotion Detection’. This included the ‘Main Screen’ gameObject, however instead of using
the EmotionDetectionScript.cs, I have created a script called Yolo.cs to manage object
detection.

119

Yolo.cs

The yolo.cs script starts off by initializing a variety of variables, such as the model to be used
(yolov7), the config file and the classes associated with each object.
It also manages the set confidence threshold, which I may switch to a slider system where
the user can set this themselves, along with other necessary variables.

yolo.cs

120

The start() function is almost identical to that of EmotionDetectionScript.cs This is because I
have aimed to make parts of the scripts as re-useable as possible to be used by different
models using the same structure and layout of code. The only difference in yolo.cs is that the
protected strings ‘classes_filepath’, ‘config_filepath’, and ‘model_filepath’ have to be set to
the associated filepaths of their respective files, all of which are stored in
“OpenCVForUnity/dnn/..”

yolo.cs

The SwitchCamera(), AdjustUISizeAndPosition() and InitializeWhenReady() functions are
identical to EmotionDetectionScript.cs as the method of camera capturing and rendering is
identical and therefore no changes need to be made.

121

yolo.cs

The Run() function is in charge of initializing the object detector model to be used throughout
running and inputs parameters such as the model, config, and classes filepaths, along with
the input size, confidence threshold and more.

If I want to actively alter the confidence threshold, I will have to re-initialize the model each
time so I will keep this in consideration for the future (this includes the EmotionRecognition
model)

yolo.cs

The remainder of this script is much more simple than the EmotionDetectionScript.cs this is
because I have removed the functionality to auto-rotate. I have done this temporarily as I will
be changing the project to be completely portrait-based so I have no need for any extra
code. Furthermore, I have not included a ‘detected faces’ text box as this scene aims to
focus more on inanimate objects in the user’s surroundings rather than a real person,
therefore I can remove the unnecessary logic from the script.

122

Splash Screen (C#)

For this part of the project, I wanted to implement a splash screen which the user is greeted
to when opening the app, or when wanting to switch scenes. I created the script below that
set up 3 public functions that, when a button assigned to it was pressed, would load the
desired scene

SceneSwitch.cs

I set up a basic splash screen, with no advanced UI for now, that contained 2 buttons, one to
take the user to the object detection scene, and one to take them to the emotion detection
scene.

123

For the face/emotion detection button, it is set to call the emotionDetection() function from
SceneSwitch.cs when pressed, taking the user to the emotion detection scene.

For the object detection button, it is set to call the objectDetection() function from
SceneSwitch.cs when pressed, taking the user to the object detection scene.

124

In the object detection scene and the face detection scene, I have added a button that takes
the user back to the splash screen, where they will be able to switch scenes. I will add more
functionality to the home screen such as settings, about, help etc. later.

I have added the object detection scene and the splash screen in the ‘Scenes in build’ tab.
This is so that everything in these scenes is built when testing in the final build. I have set
the splash screen scene at the top; this means that it will be the first to load when the user
starts the application, which is my aim.

125

Image captioning model (Python)

I'll train and use a neural network in Python Tensorflow to best set up the inputs and outputs
for my project in order to enable AI-generated image captioning. The dataset I'll be using is
the Flickr 8K dataset, which has eight thousand images and sentence descriptions that the
AI can use to train itself.

Here’s how the training AI often works:

1) Training Dataset: I will have a dataset that consists of input data (e.g., images, text,
numerical values) and corresponding target or output values. This dataset is used to
train the AI model.

2) Batches: In reality, the dataset is frequently too big to process all at once. As a result,
it is split up into smaller groups called batches. A portion of the training data are
contained in each batch.

3) Iterations: The model goes through each batch one at a time during each epoch. This
indicates that it undergoes a number of iterations, with each iteration involving a
single batch. One full epoch is deemed finished once all the batches have been
completed.

4) Modifying Model Weights: The model makes predictions based on the input data in
each iteration, calculates the error (the discrepancy between the predicted output
and the actual target), and modifies its internal parameters (weights and biases) to
minimise this error. The details of these updates depend on the optimization
algorithm and loss function that are being applied.

5) Multiple Epochs: The training process typically entails going through several epochs.
This enhances the model's capacity to learn from data over time. Typically, several
epochs are run until the model's performance on the training set is satisfactory. To
prevent overfitting, in which the model becomes overly dependent on the training
data, it is crucial to keep track of the model's performance on a different validation
dataset.

The number of training epochs is a hyperparameter that will be selected based on my
particular problem. A model with too few epochs may not have learned the patterns in the
training data and become underfit, whereas a model with too many epochs may become
overfit and learn noise from the training data. Usually, this is established through
experimentation and tracking the model's effectiveness with respect to validation data.

I used the github repo https://github.com/dabasajay/Image-Caption-Generator as a guide to
train and evaluate my training model and created my own training script to accompany this.
Firstly, I created 3 scripts called load_data.py, preprocess.py, and model.py

126

https://github.com/dabasajay/Image-Caption-Generator

load_data.py will load the data from the training images and captions from the flickr8K
dataset

preprocess.py will be in charge of the preprocessing functions that will work alongside the
load_data.py script and provide some preprocessed data to it.

model.py is used to define the CNN and RNN models and feeds them to the main train.py

load_data.py

We have Flickr_8k.trainImages.txt and Flickr_8k.devImages.txt files which consist of unique
identifiers(id) which can be used to filter the images and their descriptions

Glimpse of file:

load_data.py

127

The initial imports include utils.preprocessing, pickle, Keras tokenizer and pad sequence and
the keras to_categorical function

● utils.preprocessing
o This is a local script that is called, which includes functions for pre-processing

the inputs, that is saved in the utils folder of the Python project as seen below,
where the train_val.py script is the main script

● pickle
o Pickle is used to save and load Python objects, which is especially useful

when working with machine learning models and data preprocessing, as it
allows for the efficient storage and retrieval of complex data structures. It is
also used to load preprocessed data from files.

o ‘pickle.load’ is used to load Python objects (such as dictionaries or lists) that
were previously saved to a file using pickle.dump. In the script, it is used to
load preprocessed data, such as image features and the tokenizer, which
have been saved to binary files.

o ‘pickle.dump’ function is used to save the Keras Tokenizer object to a binary
file using pickle. The tokenizer is a crucial component in natural language
processing tasks, and it's saved to be reused in the future without having to
train it again.

● Keras tokenizer
o The Keras Tokenizer is used for text preprocessing and encoding. Its primary

purpose is to prepare the textual data (captions) for consumption by a
machine learning model.

o It:

▪ Accepts a dictionary of captions where each image id is associated

with a list of captions.

▪ Flattens these captions into a single list.

▪ Uses the Keras Tokenizer to learn a consistent mapping from words to

unique integer values. This means it assigns a unique integer to each
word in the vocabulary.

● pad_sequence function
o The ‘pad_sequences’ function from the Keras library is used to ensure that

the input sequences (captions) are of the same length. This is a common

128

preprocessing step when working with sequence data and is important when
training machine learning models, particularly neural networks.

o The main purpose of ‘pad_sequences’ is to ensure that all input sequences
(captions) have the same length as the ‘max_length’.

● to_categorical function
o The ‘to_categorical’ function from the Keras library is used to perform one-hot

encoding on the output words (target words) of the caption data. One-hot
encoding is a technique that converts categorical data into a binary format,
which is necessary when training neural networks for classification tasks,
including sequence generation tasks like captioning.

load_data.py

This function loads a set of image identifiers (ids) from a text file specified by ‘filename’. It
reads the file, splits it by newline characters, and stores the ids in a Python set. The function
returns the set of ids.

129

load_data.py

This function loads cleaned captions for images from a text file specified by ‘filename’, which
is the txt file that contains all the names of the images (Flickr_8K.testImages.txt). It reads the
file, processes it line by line, and pairs the image ids with their corresponding captions,
which are read from a .txt file that contains the captions for each image (Flickr8K.token.txt).
The ids argument is used to filter out images that are not present in the ids set. The function
returns a dictionary where each image id is associated with a list of captions and the count of
captions loaded.

The model that will be developed will generate a caption for any given image and the caption
will be generated one word at a time. The sequence of previously generated words will be
provided as input. Therefore, we will need a ‘first word’ to kick-off the generation process
and a ‘last word‘ to signal the end of the caption. I will use the strings ‘<start>‘ and ‘<end>‘
for this purpose. These tokens are added to the captions as they are loaded.

● It is important to do this now before we encode the text so that the tokens are also
encoded correctly.

This is a glimpse of the file where the captions will be cleaned and pre-processed:

Flickr8K.token.txt

130

load_data.py

The function ‘load_image_features()’ function loads the image features from the Flickr8K txt
file and loads all the features and filters them to include only those whose ids match the
ones in the ids set. It returns a dictionary where each image id is associated with its image
features/caption.

After that, the ‘to_lines()’ function converts the dictionary of the captions, generated from
‘load_cleaned_captions()’ and connects all the captions of an associated image id into a
single list. This is because each image consists of multiple captions, for better learning as
seen below:

131

load_data.py

The captions will need to be encoded to numbers before it can be presented to the model.
The first step in encoding the captions is to create a consistent mapping from words to
unique integer values.

Keras provides the Tokenizer class that can learn this mapping from the loaded captions.

Thus, the ‘create_tokenizer()’ function will fit a tokenizer on given captions.

Afterwards, the function ‘calc_max_length()’ function calculates the maximum length of
captions (in terms of the number of words) in the provided captions. It's used to determine
the maximum sequence length for the model.

An AI image captioning model typically needs a maximum length for generated captions for
several reasons:

1) Practicality: Without a maximum length, the generated captions could potentially
become extremely long and unwieldy, making them less useful for real-world
applications.

2) Computational efficiency: Limiting the length of captions also helps with
computational efficiency. It reduces the amount of time and resources required for
caption generation, making the process faster and more scalable.

3) Consistency: Setting a maximum length helps in maintaining consistency in the
length of generated captions across different images. This consistency can be
valuable for design and presentation purposes.

This is done by simply evaluating the length of the longest caption in the list and setting that
as the max value.

132

load_data.py

This function creates sequences of images, input sequences, and output words for a given
image. It prepares the data for training the caption generation model.

Each caption will be split into words. The model will be provided one word & the image and it
generates the next word. Then the first two words of the caption will be provided to the
model as input with the image to generate the next word. This is how the model will be
trained.

For example, the input sequence “little girl running in field” would be split into 6 input-output
pairs to train the model:

133

load_data.py

The ‘data_generator()’ defines a generator to be used with Keras’s model.fit_generator()’. It
generates batches of data for the model. The generator then shuffles the captions for each
image and then generates input and output sequences for training.

It does this by getting a list of all the image ids and loops through the batches, for each
image, retrieving the image id , features and caption list. It then shuffles through the caption
list. This step randomises the order in which the captions are used for training in each batch.
Shuffling helps prevent the model from overfitting to a specific sequence of captions. creates
input sequences and output words for the current image and its shuffled captions. The
‘create_sequences()’ function is called to generate these sequences, and the result is stored
in ‘input_img’, ‘input_sequence’, and ‘output_word’. Then a nested loop iterates through
each generated sequence within the current batch of images. Afterwards, each
corresponding batch list is appended with the generated sequences.

At the end, the function yields a batch of training data as a generator output. The yield
statement is used to return the batch of data. The batch is a list of two elements: a list of
input data (image features and input sequences) and the corresponding output data (output
words). This format is suitable for use with the model.fit_generator() function in Keras. The
data is converted to NumPy arrays to ensure that it's in the correct format for training deep
learning models.

A private ‘count’ variable is used throughout this to keep track of the position in the dataset
for the next batch

134

load_data.py

loadTrainData()

This function is responsible for loading and preparing the training datasets. This loads a set
of image identifiers from the training using keras’s ‘load_set’ function. This set of image
identifiers will be used to filter images and their corresponding captions.

It then calls the ‘preprocessData()’ function to run the preprocessing of the data. This
function is defined and called from the preprocess.py script.

The cleaned captions are then loaded from a file named captions.txt – the
load_cleaned_captions() function was defined earlier in the script and its purpose is to read
the captions from the file and filter them to match the provided image identifiers.

The image features are then loaded from the .pkl file that is generated after the image
features are extracted (preprocessing.py).

The code checks whether a tokenizer file ('tokenizer.pkl') exists in the directory specified by
‘model_data_path’. If it doesn't exist, it proceeds to create a tokenizer using the
‘create_tokenizer’ function, which learns a mapping from words to unique integer values
based on the provided captions. The tokenizer is then saved to the 'tokenizer.pkl' file using
the ‘dump’ function.

It finally calculates the maximum sequence length of captions in the training data and returns
the filtered training image features, captions, and the maximum sequence length.

135

loadValData()

Firstly, the function loads a set of image identifiers from the validation data set using the
‘load_set’ function. Similar to the ‘loadTrainData()’ function, this set of image identifiers will
be used to filter images and their corresponding captions for validation.

It is then followed by loading the cleaned captions similar to the loadTrainData() function.

The function then loads image features from a binary file named
‘model_data/features_inceptionv3.pkl'. features are loaded for the images specified in the
‘val_image_ids’ set. The function ‘load_image_features()’ reads the features and filters them
based on the provided image identifiers.

Finally, the function returns the filtered validation image features and captions.

preprocessing.py

preprocessing.py

The preprocessing.py script is in charge of preprocessing the data; this involves, loading and
resizing the images, converting the image pixels to a NumPy array, and extracting the
features from each image using a pre-built incpetionv3 model, where the features are
encoded and saved to ‘inceptionv3.pkl’. It also manages the cleaning of captions which is
done by reading the captions file, splitting each caption via the white space, and removing
unnecessary details within the caption (e.g. punctuation, special characters, uppercase
characters etc.)

The myTime() function as seen above is used throughout this program. Its functionality is to
display the current time before a printed output. This is so that I can see timestamps of when
each function was executed as the training may take a few hours, therefore it will be left
unattended. In order to see how long training takes and other functions, it will be beneficial to
log the timestamps.

136

preprocessing.py

This function uses the inceptionv3 model to extract the features from each image. Before it
does this, it must load the image, convert the pixels into an array that the model will be able
to decode and work on, it must also reshape the data; this means that the organization of
rows and columns in the array must be reshaped to fit the model. Finally, this reshaped array
is sent through the preprocess_input() function which is imported from the inceptionv3 model
as tf.keras.applications.inception_v3.preprocess_input

This function preprocesses a tensor or Numpy array encoding a batch of images.

preprocess_input() takes in 2 args that will return a preprocessed NumPy or tf.Tensor with
type float32 where The inputs pixel values are scaled between -1 and 1, sample-wise.

Source:
(https://www.tensorflow.org/api_docs/python/tf/keras/applications/inception_v3/preprocess_i
nput)

137

https://www.tensorflow.org/api_docs/python/tf/keras/applications/inception_v3/preprocess_input
https://www.tensorflow.org/api_docs/python/tf/keras/applications/inception_v3/preprocess_input

The new preprocessed image is passed through the model which then returns a dictionary of
form:

{
image_id1 : image_features 1
image_id2 : image_features 2

}

preprocess.py

138

The load_captions() function loads the captions from the inputted text file. This file is read
and the contents are organised into a dictionary of form

{
image_id1 : [caption1, caption2, etc],
image_id2 : [caption1, caption2, etc],
...

}

The dictionary is processed line by line, extracting the image id and caption from the tokens.
The filename of each image is extracted from the image id by separating the filename from
the ‘.png’

It returns a dictionary where the keys are image IDs, and the values are lists of captions for
each image.

preprocess.py

The clean_captions() function cleans and preprocesses the loaded captions. It performs
several text preprocessing steps, including:

- Tokenization (splitting captions into words).
- Conversion to lowercase.
- Removal of punctuation.
- Removal of single characters like 's' and 'a'.
- Removal of tokens containing numbers.

Then, It updates the input ‘captions’ dictionary in place by modifying the captions to be clean
and preprocessed.

139

preprocess.py

This function saves the cleaned captions to captions.txt

After saving, captions.txt is of form: `id` `caption`

Example: 2252123185_487f21e336 stadium full of people watch game

2252123185_487f21e336.png

140

preprocess.py

The final function in preprocess.py is the preprocessData() function. This is in charge of
orchestrating the preprocessing of both image features and captions.

It checks if preprocessed data files already exist (image features and parsed captions) and,
if not, generates them. If image features are not generated, it uses the InceptionV3 model to
extract features from images and saves them to a file by calling the extract_features()
functions, passing the folder of images (‘train_val_data/Flicker8K_Dataset/’) as the path to
the images.

If captions are not parsed, it loads and organizes captions and saves them in a specific
format by calling the load_captions() and save_captions() functions, inputting the
Flickr8k.token.txt file as the ‘captions’ parameter and ‘captions.txt’ as the ‘filename’
parameter

141

model.py

model.py is a predefined script that is in charge of defining CNN and RNN models. It first
defines a CNN model for image feature extraction using InceptionV3. Then defines two RNN
models for caption generation, one with a standard architecture and another with an
alternative architecture. For this project, I will be using the ‘alternativeRNNModel’ as this
updated architecture seems to have a higher accuracy score with others.

The script provides functions to generate captions for images using both argmax and beam
search methods and to evaluate the generated captions against ground truth captions using
BLEU scores.

Argmax is a method that selects the output with the highest probability at each step of a
sequence. In the context of text generation, it chooses the word with the maximum predicted
probability as the next word in the sequence. This method is straightforward but may result
in overly deterministic and less diverse output.

Argmax

142

Beam Search, on the other hand, is a more sophisticated method for text generation. It
considers multiple potential next words at each step (controlled by a parameter called "beam
width"). Instead of selecting the single word with the highest probability, it maintains a list of
top candidates based on their cumulative probabilities. The beam search algorithm explores
multiple paths, and when the sequence is complete or "<end>" is encountered, it selects the
path with the highest overall probability.

Visualised beam search algorithm

143

model.py

The script begins with importing numpy and keras libraries and functions, followed by
nltk.translate.bleu_score

- BLEU, or the Bilingual Evaluation Understudy, is a score for comparing a candidate
translation of text to one or more reference translations.

- Although developed for translation, it can be used to evaluate text generated for a
suite of natural language processing tasks.

o Source: (‘https://machinelearningmastery.com/calculate-bleu-score-for-text-python/’)

A perfect match between generated and reference text results in a BLEU score of 1.0, while
a perfect mismatch yields a score of 0.0. BLEU scores are used to quantitatively assess the
quality, accuracy, and fluency of generated text, providing a numerical measure of how well
the generated text aligns with the reference text. Higher BLEU scores indicate better
performance.

144

CNNModel()

This function defines a Convolutional Neural Network (CNN) model for image feature
extraction. It uses the InceptionV3 model from Keras, which is a pre-trained deep-learning
model designed for image classification and feature extraction. It removes the last layer of
the InceptionV3 model and creates a new model that takes image inputs and outputs a
2048-dimensional vector.

RNNModel()

This function defines a Recurrent Neural Network (RNN) model for generating captions for
images. It takes three arguments: vocab_size (size of the vocabulary) and max_len
(maximum caption length). It creates two input layers for the image and the caption
sequences. It applies dropout to the image input to prevent overfitting and a dense layer to
reduce the dimension of the image features to the specified embedding_size. For the caption
input, it uses an embedding layer to convert word indices to dense vectors, applies dropout,
and then uses an LSTM layer for the sequential processing of the captions. The image and
caption models are merged using concatenation and passed through dense layers to make
predictions. The model is compiled with a categorical cross-entropy loss function and the
Adam optimizer. The resulting model is returned for generating image captions.

model.py

This function defines an alternative RNN model with a different architecture for generating
captions. It takes the same arguments as the previous function. This model uses a different
approach for handling captions: it predicts the next word based on the previous words and
image features.

145

model.py

the ‘int_to_word’ function is a simple lookup function that converts an integer (typically a
word index) back into its corresponding word in the vocabulary based on the tokenizer. This
is useful as I want to convert the numerical output of a model into a human-readable text
description.

model.py

These 2 functions are called at the end of training the new model. They use a beam-search
algorithm which considers multiple possible next words (beam_index) at each step. It
maintains a list of potential captions along with their probabilities and selects the top
candidates based on the highest probability. This process continues until the caption
reaches the maximum length or "<end>" is encountered, where the max_length refers to the
maximum length of the captions in the training data. This model uses the newly trained RNN
model and is evaluated using the BLEU score.

146

train.py

train.py

These lines import necessary modules and functions. It imports modules like pickle, custom
utility functions and configuration parameters from config.py and rnnConfig from config.py. It
also imports the random module and sets the random seed for reproducibility.

A random seed is a starting point for generating random numbers or sequences in a
pseudo-random number generator (PRNG). A random seed is used to initialize the random
number generator in the context of AI training and machine learning in order to produce
repeatable results. In machine learning and AI, experiments need to be reproducible. When
training models, one must be able to run the same training process again with the same
hyperparameters and data and get the same results. This is crucial for debugging, model
comparisons, and sharing research. When something goes wrong during training, having a
fixed random seed allows the isolation of issues. The experiment can be rerun with the same
seed to see if the problem persists. If it does, it's likely not due to randomness but to a
problem in the code or data.

Then, the script loads training data, which includes image features (ImageTrain), text
features (captions) (TextTrain), and the maximum caption length (max_length). This data is
loaded and generated by the loadTrainData() function in the load_data.py script

147

load_data.py

(function returns image features, image captions, and max caption length in training images)

After loading the training data, the next line loads the validation data (ImageVal) and
(TextVal) from the same script, using the loadValData() function.

load_data.py

(function returns validation image features and their captions)

train.py

Here, the code loads a tokenizer using the pickle.load() function. This tokenizer is created
during the create_tokenizer() function which is called from the loadTrainData() function in the
load_data.py script.

148

It then calculates the vocabulary size based on the tokenizer's word index.

In the context of AI training and natural language processing, a tokenizer is a tool or
component that divides text into smaller units, most frequently words or subwords. It is a
crucial component of text preprocessing and is employed in AI training for a variety of tasks,
particularly those involving language understanding and creation.

The next line creates an instance of the AlternativeRNNModel class with specific parameters
like vocabulary size and maximum caption length. This is the model that will be used for the
image captioning.

In this training model, 2 potential models can be used, ‘RNNModel’ or
‘AlternativeRNNModel’. For the best results, according to the guide I am following, the
AlternativeRNNModel architecture provides more accurate results, although it may use more
memory to train, which isn’t an issue for me, thus, I opted to use it for my project.

This model is defined and created from the model.py:

model.py

The difference between ‘RNNModel’ and ‘AlternativeRNNModel’ is that ‘RNNModel’ uses a
simpler architecture with a single LSTM for caption generation, while ‘AlternativeRNNModel’
uses a more complex architecture with Bidirectional LSTM and TimeDistributed layers. The
choice between these models depends on the specific requirements of the image captioning
task and the trade-off between model complexity and performance. During testing, I will
analyse the performance of the ‘AlternativeRNNModel’ and if necessary, I will switch and
re-train to ‘RNNModel’ which will provide a simpler and less performance-demanding model,
paired with an optimal epoch size of 11.

149

Train.py

This section of the code sets up training-related parameters and configurations. It specifies
the number of training epochs (num_of_epochs), and batch size (batch_size). According to
the guide I am referencing for this part of the project, the most optimal number of epochs is
20, paired with a batch size of 64.

It then calculates the number of training and validation steps based on the dataset size and
batch size. It also defines the path for saving model checkpoints, including placeholders for
epoch number, training loss, and validation loss in the file name. A ModelCheckpoint
callback is created to save the best models during training, and a list of callbacks is defined.

Train.py

This part of the code shuffles the training data to introduce randomness during training. It
first retrieves the keys (identifiers) of the training data, shuffles them using random.shuffle,
and creates a shuffled version of the training data dictionary. The shuffling ensures that the
training data is presented to the model in a random order during each epoch.
The code then creates a data generator for training data using the data_generator function.
This generator will yield batches of data in the format [[img_features, text_features],
out_word]. It takes image features (ImageTrain), text data (TextTrain), tokenizer, maximum
caption length, batch size, and the random seed (1035) as inputs.

150

It generates batches of data for the model. The generator then shuffles the captions for each
image and generates input and output sequences for training, as discussed above when
breaking down the load_data() function.

Similarly, a data generator is created for the validation data (generator_val) with the same
structure as the training data generator.

load_data.py

Train.py

This part of the code initiates model training using the fit_generator method. It trains the
model for the specified number of epochs (num_of_epochs) and follows the specified
number of steps for both training and validation sets. It uses the previously defined
callbacks, such as saving the best models.

151

train.py

Finally, it will evaluate the trained model on the validation data and calculate BLEU scores
using beam search with k=3. It then calls the evaluate_model_beam_search() function in the
model.py script to perform the evaluation and display the results.

model.py

Model summary

Many parameters and variables for this program were referenced from this file to provide the
best possible results;

When running train.py the program will initialize the training of the AI model to be used in my
greater program. It will be saved as a weights file that can be used in other Python projects
to seamlessly take an input and produce an output.

152

Training

Errors when running:

Error 1:

Before:

After:

(I used the config file to determine the parameters used for the save path instead of doing it
myself)

153

Error 2:

Before:

After:

Error 3:

Before:

154

After:

Error 4:

Before:

After:

155

Running:

The model has begun generating the image features from the list of images inputted to it.
This process (for ~8000 images) takes around 7.5 minutes at an average of 17 images per
second. This will vary for each device and will depend on the amount of memory, CPU, and
GPU of a system.

The program has successfully saved the captions and features files from the images and
has saved them in /model_data/

Another error has occurred where the script cannot find the .pkl file, but that is because it is
looking for features_incpetion.pkl

This is spelt wrong and should be features_inception.pkl

I will change this and re-run the script.

156

This time, the program detected 6000 images for training and 30000 captions for them,
however, another error occurred, similar to the last, due to a spelling mistake in the code:

I have fixed this and re-run the code again.

Below is the RNN model summary.

It consists of 2 input layers, 1 embedding layer, 1 dense layer, 1 LSTM layer, 1 repeat vector,
1 time distributed layer, 1 concatenate layer, 1 bidirectional layer and another final dense
layer.

157

The program starts to iterate through and train the model but another error occurs.

This error suggests that there is a problem with one of the layers in the neural network
model. In this case, it seems to be a dense layer with a ReLU activation. The specific error is
"Matrix size-incompatible: In[0]: [3743,1000], In[1]: [2048,300]." This error indicates that
there is a mismatch in the dimensions of matrices passed to the 'model/dense/Relu'
operation. The error may also be associated with a Python interpreter state issue, which
could potentially terminate the process.

To fix this, I will try re-running train.py from the Python interpreter and if that doesn’t work, I
will attempt to use a different model architecture.

I updated my code to attempt to debug any issues with the shapes for the tensors, and these
were my results:

Image Input Shape: (None, 2048)
Image Model 1 Shape: (None, 300)
Caption Model Shape: (None, 40, 300)
Final Model 1 Shape after Concatenate: (None, 40, 600)
Final Model 2 Shape: (None, 512)

Based on the debugged outputs, the model construction seems fine. The shapes are as
expected. These shapes are consistent with the design of the RNN model, so there doesn't
seem to be a problem in constructing the model architecture, I even attempted a different
model architecture, but I came across the same error.

158

After attempting various solutions and days of unsuccessful debugging, such as migrating
the project to a Windows-based operating system, then a Linux-based operating system and
downgrading to Python 3.6.7m which the guide was written in, I still could not find any
solution to the error that I was encountering, which seemed to be a problem with the model
architecture. As a result, I have decided to move forward with a different approach by
utilising a pre-trained model, although I hope to be able to train my own image captioning
model in the future, should the time constraints of this project allow.

I will be continuing this project by utilising a solution called Huggingface.co Huggingface is
an open-source platform for machine learning and data research. It serves as a hub for AI
specialists and fans, similar to GitHub but for AI.

Huggingface.co

Huggingface is itself a company, but it is primarily made up of all the people contributing their
AI models to it, these contributions help create a community of Natural Language Processing
(NLP) models

Huggingface also makes use of a library called ‘transformers’ which allows anybody to have
direct, offline use of their models, which is what I will be using for my project.

Essentially, Huggingface is a place where people are able to share their own models and
projects, while also viewing other people’s.

The models that are featured on Huggingface are vast in number and are categorized by
their type and functions.

159

Huggingface model browse tab
Inside each category, there are more
subcategories for more specialised models
designed to undertake specific tasks.

For this project, I will be focusing on the
image-to-text language model, from the
multimodal category.

A multimodal AI model is an AI paradigm, in
which various data types (image, text,
speech, numerical data) are combined with
multiple intelligence processing algorithms to
achieve higher performances. Multimodal AI
often outperforms single-modal AI in many
real-world problems.

An image captioning AI model is classified as
a multimodal model because it involves
processing and understanding information
from multiple modalities or sources of data. In
the context of image captioning, the two main
modalities are:

Image Modality: This refers to the visual
information contained in an image. The AI
model needs to analyse and comprehend the
visual content of the image to generate a
meaningful caption.

Text Modality: This refers to the linguistic or textual information. The model generates a
caption, which is a textual description, based on its understanding of the visual content.

A multimodal model combines these different modalities to perform a task, such as image
captioning. It typically consists of two main components:

Vision Model: This component processes the visual information from the image.
Convolutional Neural Networks (CNNs) are commonly used for image processing tasks, as
they are adept at capturing hierarchical features in visual data.

Language Model: This component processes the textual information. Recurrent Neural
Networks (RNNs) or Transformer-based models, such as GPT (Generative Pre-trained
Transformer), are often used for language understanding and generation tasks.

160

Specifically, I will be using the following model for my project:

This model makes use of gpt-2, a large language model (LLM) used for text generation. After
extracting the image features, the gpt-2 model will caption the image and return a string in
the console.

In order to implement this into my project, I will be creating a Flask server that will manage
the processing of the image and within Unity, I will create a C# script that, when pressing a
button, will take a screenshot of the screen and send the image to the flask server for
caption processing, while waiting for a response.

Below is the Python script for image processing:

imageCaption.py

The script starts by importing the necessary libraries and modules, such as Flask,
transformers (from Huggingface), PyTorch, and Pillow. After the imports, the pre-trained
model is imported. For image captioning, you need a model to caption the images, a feature
extractor, and a tokenizer, all of which were included in the Huggingface model that I am
using.

161

The script then moves the model to the system GPU if available. Using a GPU for deep
learning tasks, including training and inference of machine learning models, offers several
advantages over using a CPU (Central Processing Unit) such as:

- Parallel processing
o GPUs are designed to handle parallel processing efficiently. Deep learning

tasks, such as those involving neural networks, often involve matrix
operations that can be parallelized.

- High memory bandwidth
o Deep learning models often require large amounts of data to be processed

quickly. GPUs have high memory bandwidth, allowing them to efficiently
transfer and process large amounts of data in parallel.

- Availability of GPU-Accelerated Libraries
o Many deep learning frameworks, including TensorFlow and PyTorch, provide

GPU-accelerated implementations of key operations. This means that when
running these frameworks on a GPU, the computations are offloaded to the
GPU, resulting in faster execution.

- Real-time Inference
o For applications like image captioning, where real-time responses are

desired, the speed advantage of GPUs becomes crucial. GPUs can handle
inference tasks quickly, making them suitable for applications that require low
latency.

After setting the model to the GPU or CPU, the parameters for text generation are set, this
includes the maximum length of the caption and the number of beams (beams define how
far the model should look into the potential futures/next word combinations.)

imageCaption.py

The script then creates a Flask web application then defines a route /upload that handles
POST requests. When an image is uploaded, it reads the image data from the request, calls
the predict_caption function to generate a caption, and returns the caption as a JSON
response. If an exception occurs, it returns an error message.

162

imageCaption.py

The predict_caption function takes the screenshot data as input, processes the image,
generates captions using the pre-trained model, and returns the predicted captions. If an
exception occurs during prediction, it prints an error message and returns an error string.

For now, the server will run on the default host and port (127.0.0.1:5000). The debug=True
parameter enables debugging features, making it easier to identify and fix issues during
development.

For the C# side of the image captioning, some preconditions must be met such as:

- When the button is pressed, it should be disabled until a response is returned. This is
because I do not want the user sending many responses at once and overwhelming
the server.

- When the screenshot is taken, it should disable any GUI temporarily and only capture
the raw camera view, with no bounding boxes or buttons in view. When the
screenshot is taken, the GUI can reappear.

- There should be a check that the device is connected to the internet. If it is not
connected, the image captioning button should be disabled as there would be no way
to send a request to the Flask server and this could cause some problematic errors
for the user.

Below is the script that accomplishes this

163

sendScreenshot.cs

A private Boolean ‘isButtonEnabled’ is set, this tracks whether the button is enabled. A
public Text variable called ‘captionText’ is also initialized. This is in charge of updating and
displaying the text that is shown on the UI.

‘CaptureScreenshotAndSend’ is a public method that is called when the button is pressed. It
checks if the button is enabled before proceeding. If the button is enabled, it clears the text
and starts the coroutine UploadScreenshot().

164

sendScreenshot.cs

‘UploadScreenshot’ is a coroutine. It sets isButtonEnabled to false to prevent multiple
submissions. ‘yield return new WaitForEndOfFrame()’ waits until the end of the current
frame. ‘CaptureScreenshotAsTexture()’ captures the screenshot and converts it to a texture.
‘EncodeToPNG()’ converts the texture to PNG format and stores it in a byte array.

A ‘WWWForm’ is created to prepare the data for the HTTP request. The screenshot data is
added to the form as binary data with a field name "screenshot", a file name
"screenshot.png", and the MIME type "image/png".

A ‘UnityWebRequest’ is created for a POST request to the specified URL
("http://127.0.0.1:5000/upload") with the prepared form data. ‘www.SendWebRequest()’
sends the request and waits for it to complete.

After the web request is created, the function checks if the request was successful. If not, it
logs an error. If successful, it logs success, extracts the caption JSON from the response,
and calls ‘HandleServerResponse()’.

It finally re-enables the button after the upload process is complete.

165

sendScreenshot.cs

The ‘HandleServerResponse()’ function processes the server's JSON response.
It extracts the caption from the JSON using the ‘JsonHelper.GetJsonArray’ method.
The caption elements are joined into a single string and then logged and displayed in the UI.

sendScreenshot.cs

Finally, the class ‘JsonHelper’ is a utility class to parse JSON arrays. It uses generics to
allow parsing arrays of different types. The Wrapper<T> class is a helper for deserializing
JSON arrays. The ‘GetJsonArray’ method takes the JSON string and a key, wraps it in a new
JSON structure, and then deserializes it using ‘JsonUtility’.

I have set up a textbox in the middle of the screen and a ‘screenshot’ button that calls the
‘CaptureScreenshotAndSend()’ function in the sendScreenshot.cs script. This will become
disabled while waiting for a response and return the caption in the textbox set in the public
variable.

166

I ran the code and tested the functionality.

The captioning works quite well and successfully sends a screenshot to the flask server for
processing, however, unity will be sending a screenshot of the whole device screen,
including the UI elements and text. This may have an effect on the accuracy of the
generated caption and may confuse the AI model.

The best way to tackle this is by temporarily disabling UI elements while the screenshot is
being taken.

One way to do this is to do this is by setting all the elements to enabled=False.

167

This is what it looks like when all the unecassary elements are active:

Here is what it looks like when we disable the UI elements (in the inspector)

I will alter my sendScreenshot.cs script to include the logic needed to disable these UI
elements.

168

sendScreenshot.cs

I created a list of GameObjects that can be disabled all together. I used a list as this would
allow me to easily increase the number of items in the list and remove them, without having
to create many different variables for each new UI element added. For example, if in later
iterations I add a settings button or UI images, it will be much easier to add them to the list of
GameObjects that will be disabled altogether. Once the screenshot is taken, the UI elements
are re-enabled. This process happens usually within 1-2 frames and is almost unnoticeable
but will have a massive impact on the image sent to the AI model as there are less things to
process.

169

 This is what the screenshots will look like now when captured:

Although this level of abstraction is great, the bounding box around the person’s face is also
a distracting feature. This is because the AI model only takes in a low-resolution image and
therefore the box may blend and be mistaken for something unnecessary, such as a hat,
seen below:

The caption that was detected with
this image stated “A man wearing a
hat and sunglasses”. The bounding
box from the face detection model
is mistaken for a hat and
sunglasses, this is a result of the
thicker boxes above the head and
the coloured spots on top of the
eyes.

I will need to disable this while the
screenshot is being taken so that
the processing is more accurate
when getting captions of people’s
faces.

170

The best way to disable the bounding boxes temporarily is to set a Boolean value before the
update() function in the EmotionDetectionScript.cs, where before the inference of images
begins, the function checks if a screenshot is being taken, and if so, it will stop detecting
faces temporarily.

EmotionDetectionScript.cs

I created a public boolean variable called detecting. This is by default set to true. When a
screenshot is being taken, I will set ‘detecting’ to false and thus the bounding box will
disappear.

EmotionDetectionScript.cs

I have added an if statement that checks if the program is actively detecting, which is
managed by whether or not a screenshot is being taken. I have chosen to place this if

171

statement after the rendering of the camera on screen. This is so that the user is able to still
see the camera output in real-time, regardless of whether a screenshot is being taken or not.
sendScreenshot.cs

Referencing EmotionDetectionScript.cs in order to access the public variable ‘detecting’

sendScreenshot.cs

At the start of the main screenshot function, turn ‘detecting’ to false. This will turn off the
bounding boxes and emotion detection.

sendScreenshot.cs

At the end of the main screenshot function, turn ‘detecting’ to true. This will turn on the
bounding boxes again and emotion detection for normal functionality.

When attempting to take a screenshot, I received this error:

This indicated that a public object was not set in the inspector.
Upon further debugging, I realised that I hadn’t set the emotion detection script in the
screenshot script inspector.

172

After fixing this and setting the emotion script correctly, the functionality now works perfectly,
where the only image being screenshotted and sent to the flask server is the camera output.
This means that the AI will be able to parse more accurate responses and captions to the
user.

Now, all that I need to do is introduce the logic to check if the user is connected to the
internet. This is important because if they were not, the image captioning wouldn’t work
properly.

173

sendScreenshot.cs

I have edited the sendScreenshot.cs to continuously check for a connection to the internet
by pinging Google’s public DNS server. This function will be checked every 0.5 seconds. If
the time taken to ping is longer than 1 second, assume there is no connection and disable
the screenshot functionality.

174

Test Plan for this version

Due to the nature of my project being dependent on many different functions and inputs, I
will need to test that each of the desired outputs are displayed when the expected input is
used. To track the test data, I will be using the table below, and providing each test data with
a level of priority, (1 being high priority, 2 being mediocre priority, and 3 being low priority)

Test
num.

What is being
tested

Priority Input Expected output Justification for this data

1 On-screen face
counter

1 Device
webcam +
detected
faces

Integer displaying
number of faces in
real-time

This will aid in accessibility and
allow the user to gain a
knowledge of the estimated
number of people in the image

2 YoLo object
detection

3 Device
webcam

Coloured boxes are
drawn around
different objects, and
mapped by
calculating the
coordinates of each
object and assigning
a label to them.

The YoLo object detection is
an extra feature within this
project. It is important that this
functionality works well,
however not critical to the
application as this is not going
to be the primary focus.

3 Splash
screen/scene
switcher

1 N/A The splash screen
will allow the user to
choose which
functionality they
would like to use in
the app, whether it
be emotion/face
detection, or a
general-purpose
object detection AI.

This is quite important as in
order for the user to navigate
the application, they need a
splash screen that will allow it.
The splash screen should be
the one the loads up when the
user opens the application.

4 Check internet
connection

2 N/A If there is an internet
connection, debug
“connected” if there
is no connection, the
screenshot button,
when pressed will
show a “not
connected to the
internet” text instead
of the caption.

This is needed as the image
captioning part of the project is
hosted on a server and
therefore an internet
connection is needed. If there
is no connection, pressing the
button will try to send outbound
connections and return errors,
therefore by disabling this, we
are able to reduce any
unnecessary code execution,
thus optimizing the code.

5 Image
Captioning

1 Send
Screenshot
button

A small delay, then a
message in the
middle of the screen

This is the main part of
iteration 2 that took me the
most time to implement. This is

175

displaying an AI
generated caption of
the camera feed

one of the key aspects in my
project. Someone perhaps with
visual problems, is able to
have the image in front of them
described, and then, in a future
iteration, this can be coupled
with a text-to-speech system
so that the caption is spoken
aloud to the user.

6 Home screen
button
functionality

2 ‘home’ button Takes the user back
to the splash screen

This is so that, if they wanted,
the user can return to the
splash screen and choose a
different functionality to use for
the application

7 Image resolution 3 Device
camera

High resolution, but
doesn’t make the
program slow

This is so that the user can
have a reasonable experience
when using this app and also
be able to distinguish the
camera feed at a high
resolution.

8 Aspect
ratio/rotation

2 Device
orientation

Correctly displayed
output when using
the application

This is so that the image is
consistently upright when
using the program

9 iPhone
deployment

1 n/a The application runs
and works when built
on an iphone using
xCode for
deployment

This will be tested at each
iteration in order to ensure that
during development, no build
errors occur which may cause
the application to fail when
deploying to an iPhone.

176

Test Results / Evidence

Test
num.

What is being
tested

Result Input Expected output Comments Evidence

1 On-screen face
counter

Device
webcam +
detected
faces

Integer displaying
number of faces in
real-time

N/A Figure
2.2

2 YoLo object
detection

Device
webcam

Coloured boxes are
drawn around different
objects, and mapped by
calculating the
coordinates of each
object and assigning a
label to them.

Can be very laggy and
sometimes crash the
application due to the
heavy processing
required. I will need to
optimize this.

Figure
Figure
2.5

3 Splash
screen/scene
switcher

N/A The splash screen will
allow the user to choose
which functionality they
would like to use in the
app, whether it be
emotion/face detection,
or a general-purpose
object detection AI.

N/A Figure
2.1

4 Check internet
connection

N/A If there is an internet
connection, debug
“connected” if there is
no connection, the
screenshot button,
when pressed will show
a “not connected to the
internet” text instead of
the caption.

N/A Figure
2.3

5 Image Captioning Send
Screenshot
button

A small delay, then a
message in the middle
of the screen displaying
an AI generated caption
of the camera feed

Captions can
occasionally be quite
inaccurate, this would
be due to the model
itself.

Figure
2.4

6 Home screen
button
functionality

‘home’ button Takes the user back to
the splash screen

N/A

177

7 Image resolution Device
Camera

High resolution, but
doesn’t make the
program slow

Object detection has
far too many boxes
and due to the high
resolution, causes
large amounts of
memory usage and
lag. Perhaps I will
reduce image quality
for Object Detection

All
Figures

8 Aspect
ratio/rotation

Device
orientation

Correctly displayed
output when using the
application

Ocassionally, I have
found some issues
with the Object
detection when using
in different
orientations, it can
become super laggy
sometimes. Also,
when taking a
screenshot for image
captioning, the image
is sometimes flipped. I
will need to maintain
the ApplyRotation()
function while the
image is being
processed

Figure
2.6

9 iPhone
Deployment

n/a The application runs
and works when built on
an iphone using xCode
for deployment

n/a Figures
2.1
2.2
2.4.1
2.6.4

178

Figure 2.1
Starting up the application takes the user to the home screen

179

Figure 2.2
Detected faces are updated in real-time

Figure 2.3.1
When the WiFi is on, ‘Connected’ is printed in the Log

Figure 2.3.2
When the WiFi is off, ‘Not connected’ is printed in the Log

180

Figure 2.4.1
Images are captioned E.g.1
The caption states “A woman sitting at a desk in front of a laptop computer”

Figure 2.4.2

181

Images are captioned E.g. 2
The caption states “A man is looking at a television screen in a store”

Figure 2.4.3
Images are captioned E.g. 3
The caption states “A man in a black shirt is holding a skateboard”

182

Figure 2.5.1
Object detection

Figure 2.5.2
Object Detection

183

Figure 2.5.3
Object Detection

Figure 2.6.1
Before taking screenshot (upright)

Figure 2.6.2
While taking screenshot (EmotionDetection script is disabled so ApplyRotation() function is
not working therefore image is upside down while processing)

184

Figure 2.6.3
After caption is returned (EmotionDetection is re-enabled and thus ApplyRotation() is being
called every frame so the image is corrected)

(The caption states “A person in a hospital bed with a tube in their mouth”)

Figure 2.6.4
Sometimes, the camera will not flip when taking a screenshot and sending it. This depends
on the device rotation and is a bug within Unity’s camera texture logic.

(UI objects disappear while screenshot being taken and sent to not distract the AI with
unnecessary objects (abstraction))

185

186

Feedback from Stakeholder
As I mentioned earlier, my stakeholders are a mix of potential users and tech enthusiasts
who hope to gain more knowledge about the common applications of artificial intelligence or
who would like to use this project to improve their personal lives. Since I have implemented
many key features now into the project, I will interview all 3 stakeholders: Aiad Tarik, Mario
Prifti, and Mike Parish this time, as I believe this project is now fairly usable by him. The 3
stakeholders will be referred to as AT, MPr and MPa to indicate the answers that they will
provide.

Does the app feel seamless and easy to use?

AT: The app overall feels quite seamless and easy to use. The facial recognition system
works smoothly, and the object detection, despite occasional crashes, shows promise.
However, the UI issues during the screenshot process could be addressed for a more
seamless experience.

MPr: The app has a cool vibe, but I think there's room for improvement in terms of user
engagement. Adding some visually appealing elements or interactive features on the
home/splash screen could make it more interesting for users of all ages.

MPa: The app feels a bit confusing for me at times, especially with the landscape-only mode.
I'm more used to portrait orientation. A simpler navigation system might make it easier for
users like me.

How do you feel about the accuracy of the image captioning?

AT: The accuracy of image captioning is quite weak. It occasionally provides some
information about the images, aiding users with visual impairments effectively, however,
most of the time the information is incorrect or out-of-context, perhaps a more heavily-trained
model would help.

MPr: The image captioning is a great feature. It adds a creative touch to the app and makes
it more enjoyable for users, however it doesn’t always caption the image properly

MPa: The image captioning is quite confusing. The idea is good but it frankly doesn’t work
well enough.

187

How do you feel about the accuracy of object detection?

AT: Object detection, despite occasional crashes, performs well when it works. Improving
memory management to prevent crashes would significantly enhance the user experience.

MPr: Object detection is good, but those occasional crashes aren’t. Adding some creative
loading animations or messages during processing could make the user experience more
engaging, even when there are hiccups.

MPa: Although a nice feature, I don’t think it is very necessary, particularly the crashes make
it a bit frustrating.

How do you feel about maintaining a landscape rotation for the use of this application?

AT: While I understand the challenges with auto-rotation, maintaining only landscape mode
may limit user preferences. Exploring a solution to improve auto-rotation functionality would
be beneficial for user convenience.

MPr: Landscape mode is okay, but having the option for both portrait and landscape would
be great. People have different preferences, and giving them the choice would make the app
more versatile.

MPa: I prefer apps that work in portrait mode too. It would be nice if the app supported both
orientations for a better user experience.

Are there any improvements you would recommend to the currently implemented features?

AT: Improvements could be made in handling the UI during the server processing time after
taking a screenshot. A smoother transition and faster response from the server would
enhance the user experience significantly. Additionally, resolving the occasional crashes
during object detection would be crucial.

MPr: Maybe a progress bar or a visually appealing animation could distract users from the
wait time during the image processing. Also, making the object detection run at a higher
frame rate and smoother. This would really help out.

MPa: For someone like me, the app might benefit from a more straightforward layout and
maybe a tutorial to explain the features. Also, improving the image captioning and fixing the
crashes during object detection is vital.

188

Changes/Fixes that I now plan to make to the design or code as a result
of testing and feedback

Fixes that I now plan to make to the design or code as a result of testing and feedback in this
iteration include addressing several user experience and functionality aspects. The primary
concern is the occasional crashes during object detection, likely attributed to memory
management issues. To mitigate this, I will conduct a thorough review of the code, focusing
on optimising memory usage and enhancing error handling to prevent abrupt application
closures. Additionally, the UI disruptions during the screenshot process, where the screen
momentarily flips and delays in UI elements reappearing, will be addressed to ensure a
smoother transition. Furthermore, I acknowledge the feedback regarding the limitation of
landscape-only mode and will work on incorporating both portrait and landscape orientations
for improved user flexibility. These adjustments aim to enhance the overall usability and
reliability of the app, providing a more seamless and inclusive experience for users across
various backgrounds and technological proficiencies.

For my next iteration, I plan to add:
● text-to-speech
● variable confidence metre
● Improve UI (this will be the main focus of iteration 3, after addressing the bug fixes)

Evaluation

In this second iteration, my focus was on expanding the app's capabilities by integrating a
button for image captioning and incorporating an object-detection section. A significant
portion of my time was devoted to researching CNN and RNN AI models, with the original
intention of creating a custom model. However, after encountering challenges and weeks of
unsuccessful attempts, I opted for a pre-trained model from HuggingFace. Notably, I added
an on-screen face counter to enhance user feedback. Despite these positive advancements,
several bugs surfaced during testing. The object-detection feature occasionally led to app
crashes, likely stemming from memory management issues. Furthermore, pressing the
screenshot button resulted in the disappearance of UI elements, initiating a server process
for caption processing. The screen flipping during this process and delayed UI element
reappearance pose usability concerns. Auto-rotation issues led to a decision to maintain
landscape mode exclusively. A home/splash screen was introduced in this iteration, allowing
users to select application functionality. The app's overarching goal, aiding visually impaired
individuals in identifying their surroundings, remains a priority. Future iterations may explore
the incorporation of text-to-speech functionality, extending beyond image captioning to
include features like facial recognition. The image captioning server, developed using Python
and Flask, presented a learning curve, and the integration of HuggingFace into the project
via a server required substantial research. Overcoming challenges, I acquired the skills to
make and receive Flask requests in C#, demonstrating adaptability and persistence in
addressing new technologies and methodologies.

189

Iteration 3 - Date 03/10/2023

Aims for this iteration

In iteration 3, the primary goal is to enhance the front-end and user interface (UI) to elevate
the overall user experience and accessibility. My focus remains on preserving the core
functionality of the main program while introducing additional accessibility features, including
potential audible triggers.

By the conclusion of this iteration, my aim is to deliver a fully operational, visually pleasing UI
and UX that aligns seamlessly with the pre-established design specifications for this project.
The intention is to create a user interface that is not only aesthetically pleasing but also
intuitive and accessible to a wide range of users.

To achieve this, I plan to incorporate open-source designed buttons and images, ensuring a
cohesive and professional look for the project. The overarching objective is to make the
application simple and user-friendly, catering to the needs of all individuals.

Below are some of the functions from the top-down design that I will be working on and
improving from iteration 1 and 2 during this portion of development:

The functions above that have been included in this iteration are primarily focused on extra,
further development, with a focus on UI and buttons, haptic feedback and text-to-speech,
allowing for advanced accessibility, which is a key element of this project.

I had planned to include a variable settings slider/button during iteration 2, however due to
time constraints, I will attempt to develop this into the project within this iteration; a
settings\pause button where the user can alter some of the program’s functionality, such as
the confidence threshold, text-to-speech volume etc.

190

Bug Fixing:

One of the main pieces of feedback that I received from my stakeholders during this iteration
was the accuracy of the captioned models throughout testing. This can be seen in figure
2.4.2, 2.4.3, and 2.6.3 where the captions are quite inaccurate and do not tell the contents of
the image correctly. To counter this, I returned to Huggingface.co and selected a different
pre-trained model. This time, one that was trained on the COCO dataset, a large-scale
object detection, segmentation, and captioning dataset, with over 330,000 images, each with
5 captions per image, leading to over 1.5 million total captions to train off. This will in turn,
hopefully produce a more accurate image captioning model.

The updated model that I will be using from HuggingFace.co

To use this model, I will have to update my python server code, and perhaps my C# code for
receiving the captions and decoding them.

191

model.py

I have updated the model script. This time, It is using the
Salesforce/blip-image-captioning-large model that was documented to be found more
accurate than other models.

For this model, I do not have to set parameters for text generation nor do I have to extract
pixel values. Rather I simply set an input, deduce the output destination and the caption to
be extracted for sending to the main application. This is a much simpler script than the
original model that I was using in iteration 2 as all of the processing and extraction is done
when generating the model outputs, thus reducing any chance of error and improving
efficiency.

192

sendScreenshot.cs

Since the output is in a simple Json string format, there is no need to extract words from an
array, so I can remove the HandleServerResponse() function from the script, and simply
attach the returned Json string from the server to the gameobject text field. This also
simplifies the code and reduces the risk of potential errors.

In terms of the lagging when using the object detection section of the application, I was
unable to find an immediate solution to this problem and so I will continue with development
and hope to tackle this further down the line.

Summary of aims:
● Improve home screen UI

o Minimalist, but visually appealing and easy-to-use buttons
● Settings button, to adjust various thresholds
● Improve general UI and responsiveness of application
● If time allows, incorporate text-to-speech for captioned outputs
● Add loading animation while caption is being generated

o If time exceeds, cancel request and return to normal functionality

193

Annotated code screenshots with description

UI overhaul

In this iteration, my primary goal was to enhance user experience and UI by redesigning the
entire interface, starting with the home page/landing screen. This involved a comprehensive
overhaul to address existing usability issues and create a more intuitive and visually
appealing interface. The decision to prioritise the home page recognizes its crucial role as
the digital gateway to our platform. The revamped design focuses on refining layout,
optimising navigation, and streamlining the user's journey for a more gratifying digital
experience. This iterative process reflects a commitment to continuous improvement and a
user-centric approach in the evolution of our platform.

In this redo, my main aim is to give the interface a simple and clean look. I want it to be easy
for everyone to use, without unnecessary complications. Going for a minimalist style means
fewer distractions and a more straightforward design. This not only makes things accessible
for all users but also looks neat and tidy. The idea is to strike a balance between being easy
to use and looking good – making sure it's a smooth experience for everyone who uses the
platform.

I've opted for a straightforward grey and white
icon pack for the buttons, aiming to maintain a
clean and uncluttered visual style. The simplicity
of these icons aligns with the overall minimalist
design approach I'm implementing, ensuring
that they seamlessly integrate with the interface
without overwhelming the user. By using a
consistent colour scheme, specifically grey and
white, the buttons maintain a cohesive and
unified appearance. This not only enhances the
aesthetic appeal but also promotes clarity and
ease of recognition for users. The selected icon
pack serves not only as a functional element for

navigation but also as a visual cue, contributing to an intuitive and user-friendly experience
throughout the platform.

For the button text fonts, I am using google fonts to browse and search for a font that would
match the current style of the program. It should be easily readable and easy on the eye,
while also being simple and basic.

194

The font that resonated with me the most was Raleway. This perfectly fit the aesthetic of the
program, being modern while also simple and readable

For the buttons on the home screen, I ensured that the text field was set to a TextMeshPro
object. This is because TMP is a text rendering asset for Unity that provides enhanced text
rendering and formatting capabilities compared to Unity's built-in Text component.
TextMeshPro supports custom fonts, including dynamic font sizing and improved text
rendering quality and is designed to be highly optimised for performance, even with a large
amount of text on the screen. It uses efficient text rendering techniques, making it suitable
for UI elements and in-game text.

195

In order to use the selected font with TMP, I must first use the font asset creator. This is used
to generate a font asset from a TrueType Font (TTF) or OpenType Font (OTF) file. This
process involves importing the font, configuring settings such as font size and style, and
creating an asset that can be used for rendering text in Unity.

196

I imported the downloaded .ttf font Raleway and left all the values as default, which then
created the unity font asset to be used in TMP.

I applied this font to the button texts and recoloured the background to create a more
aesthetic look to the landing page.

Before:

197

After:

I aimed to use a neutral colour pallet of white, black and different shades of grey.

There seems to be a lot of empty space mainly towards the middle of the screen, which I
was hoping to fill with some welcome text/logo, using the same font and style.

198

I also needed to create a button for the settings page and the information/about page so I
created 2 standard buttons, deleted the text and set the image sprite to one of the suitable
images from the icon pack. I also created some filler text for the top of the page, with the
name of the application, along with a short slogan.

Upon updating the UI for the emotionDetection scene, I started out by changing the colour
and font of the textObject, however, I noticed that it is not as sharp as the home screen, nor
does it scale well, as shown below:

This is due to the fact that the text being edited is a standard Unity text object, rather than a
TextMeshPro. TextMeshPro uses a more advanced text rendering engine compared to the
default Unity Text component, however a script change will need to be made as updating the
standard text object is different to a TextMeshPro object.

199

After updating to TextMeshPro, the text scaling and resolution is corrected.

EmptionDetection.cs

In order to access TextMeshPro modules, I will need to import the TMPro library in C#

I have also changed the faceCountText variable from a standard unity UI text object to a
TMP_Text variable type.

After testing the changes, I came across an error where the TextMeshPro object was not
updating:

200

This was due to the error popping up in the console:

After working on this project for a few months, it became clear to me immediately that this
error was due to a public variable not being referenced in the inspector. This was
immediately changed.

I continued to revamp the entire UI for the emotion detection scene by adding icons instead
of text buttons, while also increasing the readability of the text on the screen by adding a
grey background box to increase the contrast of the text and buttons as shown below

201

I may change the colours and sprites of the buttons later on, along with the UI background,
but for now, this has helped increase the useability and readability of text and buttons.

I am also going to do this for the captioned text. My aim is to create a text box with a
transparent background, similar to the “Faces detected” text that appears when a caption
appears on screen. I also want to implement a feature to hide the caption if the user wants to
look at the screen. This will be done through another button, which toggles the captionText
gameObject.

202

This is the current position and style of the captiontext gameObject. It currently uses a
standard unity ‘text’ component - I will need to upgrade this to TMP and update the
corresponding code also.

I updated the caption text object to utilise TextMeshPro and applied the chosen font also.

203

sendScreenshot.cs

I updated the script to use the TMPro library and changed the public ‘Text’ to a public
TMP_Text in order to change and edit the contents of the object component.

I did not make the same mistake as last time and
ensured that the caption text public variable was
assigned before testing.

204

However, I still want to add a background to increase the text contrast as it will be quite
difficult to read without. In order to do this, I have been adding a UI image object behind the
text, however, for the captions, I also want the text background to be dynamically sized so
that the size will change depending on the length of the outputted caption.

In order to do this, I will be following this guide from youtube.

The first thing to do for this
to work, was create a UI
image into the scene. This
will be the text’s
background.

205

https://www.youtube.com/watch?v=qlKaFJS6RMg

I then added a vertical layout group component, this will
allow the text and any child objects to control the sizing of
the image object. The padding is set to 10 all around - this
is so that the edge of the image is not touching the text,
and there remains a gap. This can be altered later to
preference.

206

207

I then added a Content Size Fitter to the image gameObject, the description of its
functionality is given below, provided by Unity documentation:

Afterwards, I add the TMP text object underneath and it is complete.

208

209

As seen in the figures above, the text background dynamically changes with the length of the
text in the TMP textbox below. This means that there is no need for any complex code based
on the length of the returned caption.

I have come across the issue where an empty caption shows a small grey box with no
content. This is because of the padding that I put on the image object which stops it from
being empty.

This can be fixed in 2 ways:
1) Set the padding to 0 and then switch it to 10 via a script when a caption is passed
2) Disable the gameObject and then re-enable when a caption is returned using a

boolean
3) Check if the text component of the gameObject is empty. If it is, disable/hide the

object

210

I am going to fix this bug using the third method as it seems the simplest and the best
foolproof method.

sendScreenshot.cs

Firstly, I added the public gameObject that will be enabled and disabled based on the
caption length.

sendScreenshot.cs

This logic ensures that when
the text value in the
captionText is empty, the
parent object will be disabled.
This is done by continuously
checking the state of the
captiontext text field through
the update() method.

When the program starts, the
captionText is set to be empty
which ensures that the text box
is disabled.

I have also included a public
function called clearCaption()
that sets the text field to empty
when the user requests. This is

so that if they want the caption to disappear when they want a better look at the screen, they
can press a button, the text field is emptied, and thus the gameObject is hidden.

211

I have created a button labeled ‘clear captions’ and set the linking function to the
clearCaption() function from the sendScreenshot.cs script.

Text-To-Speech

In order for TTS to work, I will need to import an external library, asset, or SDK, many of
which are not freely available. This is because Unity does not have TTS functionality. Upon
researching, I found the following asset which should work with iOS, which is what my
project aims to target:

212

Importing the package into Unity

In order to understand how to implement this into my project, I took a look at the included
‘readme.txt’ which included some vital information seen below:

sendScreenshot.cs

213

In order to test the functionality of the TTS plugin, I will set the code to generate a caption as
soon as the caption is returned and say it aloud. I will build this on my phone and assess its
functionality.

Upon testing, a caption is generated, however nothing is said and the UI items that
disappear and then re-appear remain disabled, which means that the code is stuck after
generating and displaying the caption

I checked the xCode debug console and came across this error.

I decided to use the examplescene provided with the plugin and test this, seeing if it works
adequately:

214

Upon compiling for my phone, it searched the onboard memory for the built-in ios voices
folder and worked perfectly. I will perhaps use this as settings tab to simplify the process, as
it is all readily available. If I have time, I may update the UI, however this isn’t necessary at
this point.

Now, I will attempt to use the same ‘speak’ button for my main scene in unity, by using the
same built-in script, but instead of reading the textbox, it will read the server response.

sendScreenshot.cs

The program will now load the voices by loading the exampleScene with all the relevant
code and now, when pressing the speak button, the caption will be read aloud, in any voice
that the user pleases to choose.

215

Loading Caption

When the application is loading a caption, the UI all disappears and depending on internet
speeds and server response time, the time taken for a caption to be returned can be
relatively long. As a result, I want to implement some form of loading animation while the
image is being processed and a button that allows the user to terminate the request,
allowing the UI objects to re-appear and continue with the emotion detection as before.

For the loading animation, I will be using the following open-source loading icon pack from
the unity asset store:

After importing the asset folder into my project, I had a look at the various prefabs that were
included, and came across the following, which caught my attention, and I thought would fit
the theme of the project quite well:

I will import these into the main scene, when the image is sent to the server, the script
should enable this gameObject and disable everything else. To do this, I should create a
public variable to hold this gameObject and change its state via the sendScreenshot.cs
script.

216

sendScreenshot.cs

Create the variable for the loading Icon.

sendScreenshot.cs

Right after the screenshot has been taken and converted to byte format, the loading icon
prefab is loaded and the animation will automatically start playing.

sendScreenshot.cs

Right after the upload is complete and the caption is returned, the loadingIcon is
re-activated.

Due to time constraints for iteration 3, I will not be able to implement a ‘cancel upload’
button. If I were to implement this feature in a future iteration, I would implement a method
that can stop the coroutine and handle any necessary cleanup, I would do this through
setting up a flag that would be able to skip the request.

217

Test Plan for this version

Due to the nature of my project being dependent on many different functions and inputs, I
will need to test that each of the desired outputs are displayed when the expected input is
used. To track the test data, I will be using the table below, and providing each test data with
a level of priority, (1 being high priority, 2 being mediocre priority, and 3 being low priority)

Test
num.

What is being
tested

Priority Input Expected output Justification for this data

1 On-screen face
counter UI
updating

2 Detected
faces

Integer displaying
number of faces in
real-time on a grey
background

This will aid in useability and
promote a more user-friendly
readable interface

2 Image caption
on grey
background

2 Image
Captions

Grey background
that the captions are
displayed on so the
user can see clearly

The YoLo object detection is
another key aspect of this
project. It is important that this
functionality works well.

3 Splash
screen/scene
switcher UI
Buttons

3 touchscreen The splash screen
will allow the user to
choose which
functionality they
would like to use in
the app, whether it
be emotion/face
detection, or a
general-purpose
object detection AI.

This is to allow the user to
navigate the application. They
need a splash screen that will
allow it. The splash screen
should be the one the loads up
when the user opens the
application.

 4 Settings/Voice
Settings page

1 Settings Page
button

Opens the settings
scene for the TTS
functionality

This is needed as the captions
will be read aloud through a
TTS system. This should be
customizable by the user in
order to tailor to their needs
and preferences

5 Caption
Text-To-Speech

1 TTS button Upon pressing the
button, the
application will read
out the displayed
caption out loud, in
the voice/setup done
by the user

This is one of the key features
of iteration 3 and the project
itself, which aims to assist
those with visual impairments
by providing them with a new,
audible way of viewing their
surroundings using AI.

6 Clear Captions
button

2 Clear
Captions
button

When this button is
pressed, any caption
loaded and displayed
on screen is cleared
to provide a clearer
view of the screen.

This is important as if the user
wants to focus more on the
camera output and facial
expressions, the caption can
get in the way, so there is a
button to get rid of this.

218

7 ‘Cancel Upload’
functionality

2 ‘Cancel
upload’ button

When this button is
pressed, the caption
request is cancelled
and the UI elements
re-appear on screen

This is important as if the client
has a very slow internet
connection, this process can
be tedious and boring,
therefore they should have an
option to cancel this operation
on request.

8 ‘Loading’ icon
for image
captioning

2 Image caption
button

When the image is
being processed and
request is sent to
server, animated icon
starts playing to
indicate it is being
processed.

The loading icon will indicate to
the user when the image is
being captioned, that way they
aren’t confused about the lack
of UI and functionality when
the button is pressed.

9 TTS
customisation

2 ‘Settings’
Page

The user will have
the ability to
customise the speed,
pitch, and volume of
the Text-to-Speech
voice

This will help the user have a
more personalised experience
within the app, which is the
primary focus for iteration 3

10 iPhone
deployment

1 n/a The application runs
and works when built
on an iphone using
xCode for
deployment

This will be tested at each
iteration in order to ensure that
during development, no build
errors occur which may cause
the application to fail when
deploying to an iPhone.

219

Test Results / Evidence

Test
num.

What is being
tested

Result Input Expected output Comments Evidence

1 On-screen face
counter UI
updating

Device
webcam +
detected
faces

Integer displaying number of
faces in real-time on a grey
background

n/a Figure
3.1

2 Image caption on
grey background

Image
Captions

Grey background that the
captions are displayed on so
the user can see clearly

n/a Figure
3.2

3 Splash
screen/scene
switcher UI
Buttons

touchscreen The splash screen will allow
the user to choose which
functionality they would like
to use in the app, whether it
be emotion/face detection,
or a general-purpose object
detection AI.

n/a Figure
3.3

4 Settings/Voice
Settings page

Settings Page
button

Opens the settings scene for
the TTS functionality

Since I ran out of
time, I was not
able to make a
custom settings
page with a clean
UI

Figure
3.4

5 Caption
Text-To-Speech

TTS button Upon pressing the button,
the application will read out
the displayed caption out
loud.

Works as
expected, in the
desired voice that
the user sets up

n/a

6 Clear Captions
button

Clear
Captions
button

When this button is pressed,
any caption loaded and
displayed on screen is
cleared to provide a clearer
view of the screen.

n/a Figure
3.5

7 ‘Cancel upload’
functionality

‘Cancel
upload’
button

When this button is pressed,
the caption request is
cancelled and the UI
elements re-appear on
screen

Due to time
constraints, I was
unable to
implement this
feature into
iteration 3.

n/a

8 ‘Loading’ icon for
image captioning

Image
caption
button

When the image is being
processed and request is
sent to server, animated
icon starts playing to
indicate it is being
processed.

n/a Figure
3.6

220

9 TTS customisation ‘Settings’
Page

The user will have the ability
to customise the speed,
pitch, and volume of the
Text-to-Speech voice

Due to time
constraints, I was
unable to improve
the UI of the the
settings page and
had to stick to the
pre-made TTS
customisation
scene provided by
the TTS package,
however in terms
of the
functionality, this
works brilliantly

Figure
3.4

10 iPhone
deployment

n/a The application runs and
works when built on an
iphone using xCode for
deployment

n/a See all
figures

Figure 3.1

221

Figure 3.2

Figure 3.3

222

Figure 3.4

Figure 3.5.1
(Caption is on the screen, taking up space)

223

Figure 3.5.2
(After pressing clear caption, the caption box disappears, freeing up space)

Figure 3.6

224

Feedback from Stakeholder

In the previous iterations, I highlighted that my stakeholders consist of potential users and
keen tech enthusiasts on exploring the practical uses of artificial intelligence or seeking to
enhance their daily lives through this project. With the integration of crucial functionalities,
including user interface enhancements and auditory feedback, the project has reached a
level of usability that I believe warrants further evaluation. Therefore, I plan to conduct
interviews with all three stakeholders: Aiad Tarik, Mario Prifti, and Mike Parish. For clarity
and brevity during the presentation of their feedback, they will be abbreviated as AT, MPr,
and MPa, respectively.

How seamless do you find the navigation with the newly updated user interface, especially
with the addition of symbols for buttons and the revamped splash screen?

AT: The updated interface is a significant improvement. The use of symbols over text for
buttons simplifies navigation and makes the app feel more intuitive. The splash screen adds
a professional touch that aligns well with the overall design language of the application. It's
clear that thought has been put into making the UI efficient and visually appealing.

MPr: I love the new look! The symbols are a smart choice because they make the app look
modern and are really easy to understand at a glance. The splash screen with the logo and
slogan gives a cool first impression that makes me excited to use the app. It's definitely more
seamless than before and feels like something designed for my generation.

MPa: I found the changes quite helpful. The symbols on the buttons are much easier for me
to navigate through the app, compared to remembering what each text meant. The new
splash screen made the app feel more welcoming and less intimidating for someone like me.
It's a lot easier to use now, and I appreciate the effort to make it accessible.

What are your thoughts on the integration of the Text-To-Speech function for reading aloud
image captions? Does it enhance the app’s usability for you?

AT: The Text-To-Speech feature is a fantastic addition. It not only makes the app more
accessible but also allows users to experience the content more dynamically. For someone
who multitasks, being able to listen to the captions while doing something else is a great
usability enhancement.

MPr: I think the Text-To-Speech is super cool! It makes the app feel more interactive, and I
can share the captions with friends without having to read them out loud myself. It's like
having a narrator for the pictures, which adds a whole new layer to how I engage with the
content.

225

MPa: The Text-To-Speech is a brilliant feature for me. Reading on a small screen can be
challenging, so having the captions read aloud is very helpful. It makes me feel more
connected to what's on the screen and ensures I don't miss out on any information because
of small text.

Considering the updates to the UI and the introduction of auditory feedback, do you find the
application more user-friendly and accessible, especially for individuals who might not be as
familiar with technology?

AT: Absolutely. The enhancements in UI and auditory feedback significantly contribute to the
app's user-friendliness. It feels like the app is now designed to cater to a wider audience,
including those who might not have extensive tech experience. These features bridge the
gap between advanced functionality and ease of use.

MPr: Yeah, for sure! The updates made the app a lot more fun and easier to use. The
sounds and voice feedback make it feel like the app is talking to me, which is pretty
awesome. It’s definitely a step up in making technology feel more personal and less
daunting for everyone.

MPa: Yes, the improvements have made a big difference. I used to find apps like this quite
complicated, but the clearer UI and the voice feedback have made it much simpler for me to
understand and use. It’s reassuring to know that developers are considering people like me
when they make these updates.

Given the updated image captioning model, how do you now rate the accuracy and
relevance of the captions generated by the app? Do you find them consistently reflective of
the emotions and scenes depicted?

AT: The updates have markedly improved both the accuracy and relevance of the image
captions. It's evident that the algorithm behind the captioning has become more
sophisticated, often pinpointing the scenes with impressive precision. I find the captions
consistently reflective of what's depicted, adding a layer of engagement that was previously
missing. It's not just about recognizing faces or objects anymore; the app now captures the
essence of the moment, which greatly enhances the user experience.

MPr: Definitely, the captions are way more on point now. Before, they were kinda hit or miss,
especially with more complex scenes or subtle emotions. But now, it's like the app really gets
what's happening in the picture and the mood of the people in it.

MPa: I've noticed a big improvement in how the captions describe the pictures I take. Before,
they seemed a bit generic, but now they seem to really match what’s in the photo, including
the mood or the setting.

226

Considering the diverse age range of our stakeholders, how do you find the app's
applicability and usefulness across different age groups with the new features implemented?

AT: The implementation of new features has significantly enhanced the app's appeal and
utility across various age groups. The intuitive design, combined with features like
Text-To-Speech, addresses a wide range of user needs and preferences. For tech-savvy
users, the sophisticated emotion and face detection offer a depth of interaction that’s both
engaging and informative. Meanwhile, the improved usability and accessibility features
ensure that even those who aren't as comfortable with technology can navigate the app with
ease. It's a testament to thoughtful design that considers a broad user base, making it a
valuable tool for anyone, regardless of age or tech proficiency.

MPr: With the latest updates, the app has become something that I can see people of all
ages enjoying. The UI is sleek and easy to navigate, which is great for my friends and me,
but it's also straightforward enough for older generations to use without getting frustrated.
The Text-To-Speech feature is a hit because it makes the app more accessible and fun,
especially for sharing captions out loud. It feels like the app is now more inclusive, taking into
account the different ways people interact with technology today. Whether it's for education,
entertainment, or just staying connected, the app has something to offer everyone.

MPa: The recent updates have made a clear difference in how approachable the app is for
people of my age, as well as for the younger folks in my family. The simplification of the
interface, combined with the audible feedback from the Text-To-Speech function, has made it
much easier for me to use and enjoy the app. I've seen my grandchildren play around with
the emotion detection and get a kick out of the captions, which shows me it's engaging for
them too. It's rare to find technology that bridges the gap so well, making it not just a tool for
one group but a shared experience that brings different generations together.

Based on your experience with the current iteration, are there any further improvements or
features you would suggest, particularly in areas of usability or technology integration?

AT: While the app's technological enhancements are commendable, there are areas where
further improvements could significantly elevate the user experience. A notable concern is
the waiting time for image captions to load. Optimizing the backend processes or employing
more efficient algorithms could reduce this latency, providing a smoother and more
immediate interaction. Additionally, the app could better accommodate various screen sizes
and resolutions. Ensuring that the UI elements dynamically adjust to fit different screen
scales would greatly improve usability across all devices. This adaptability is crucial for
ensuring that the app delivers a consistent and accessible experience, regardless of the
user's device.

MPr: The app is really cool, but I think it could be even better with some social sharing
features. It would be awesome to directly share the captions and photos on social media or
within the app's own community platform. This would make it more engaging for users like
me who love sharing interesting finds with friends.

227

MPa: I've found the app much easier to use with the recent updates, but I still think there
could be more done for those of us who aren't as tech-savvy. Perhaps a tutorial or help
section with video guides could be added to walk new users through the features and how to
use them. This could be especially helpful for older users who might feel overwhelmed by
new technology. Another suggestion would be to create a voice recognition feature to allow
for voice commands, making it easier to navigate the app without having to rely as much on
the touchscreen.

Evaluation

In this iteration, I concentrated on refining the user interface and enhancing usability,
marking a pivotal step towards making the application more inclusive and accessible for
users across the age spectrum. This phase was characterised by the successful
incorporation of key features aimed at improving the overall user experience, demonstrating
our commitment to bridging the technological divide and creating a universally appealing
platform. The introduction of intuitive UI enhancements and the implementation of auditory
feedback mechanisms exemplify the efforts to cater to diverse user needs, making
technology more approachable and engaging for everyone.

Despite these achievements, I encountered limitations due to time constraints, which led to
the postponement of several planned features and the inability to address existing issues
fully. Notably, the absence of a 'cancel image upload’ functionality and unresolved bugs,
such as screen scaling inconsistencies and camera rotation challenges for portrait mode,
were areas where our aspirations outpaced our capacity. These shortcomings highlight the
complexities involved in software development, where prioritization and time management
play critical roles in determining what can be accomplished within a given iteration.

Reflecting on the journey from the previous iteration, where focus was on expanding the
app's capabilities through the integration of advanced AI models and the introduction of
features like an on-screen face counter, it's clear that each phase of development brings its
own set of challenges and learning opportunities. While the shift to a pre-trained model from
HuggingFace was a pragmatic decision in the face of technical hurdles, it also underscored
the importance of flexibility and adaptability in leveraging existing technologies to advance
our goals.

Looking ahead, the insights gained from addressing the technical and usability challenges in
this iteration will inform my approach to future developments. The continued focus on
refining and expanding the app's features, with an emphasis on improving stability, and
accessibility, will ensure that development remains aligned with the overarching goal of
creating a versatile and user-friendly platform.

228

Final Evaluation

Final Testing Evidence: Functionality and Robustness

Post Development testing plan

Test
No.

Aspect being
tested/Link to success
criteria

Justification Importance? How to perform
test

Type of test
(valid,
invalid,
boundary)

Expected
result

Actual result Success?

1 A title page/main
menu is loaded

Succcess criteria points
#2 and #5

(User interface design)

(Home screen)

Ensuring the title
page/main menu
loads correctly is
crucial for providing
users with a clear
starting point and
navigation options,
enhancing their
overall application
experience.

Start the
application

Valid App displays
the home
splash screen

App displays
the home
splash screen

Evidence:

The app loads the main title page, displaying all the UI elements and text

2 Main menu should
allow the user to
navigate to ‘emotion
detection’ scene

Succcess criteria points
#2, #5 and #11

Testing the main
menu's navigation to
the 'emotion
detection' scene is
essential for
ensuring users can
access core features
seamlessly,

Press ‘emotion
detection’
button in home
screen

Valid App displays
the ‘emotion
detection’
scene

App displays
the ‘emotion
detection’
scene

229

(User interface design)

(Home screen)

(Ease of use)

improving usability
and engagement
with the application.

Evidence:

Emotion Detection scene is loaded when the user selects the button from the home screen, displaying the following UI and scene layout

3 Main menu should
allow the user to
navigate to ‘object
detection’ scene

Succcess criteria points
#2, #5 and #11

(User interface design)

(Home screen)

(Ease of use)

Testing the main
menu's navigation to
the ‘object
detection' scene is
essential for
ensuring users can
access core features
seamlessly,
improving usability
and engagement
with the application.

Press ‘object
detection’
button in home
screen

Valid App displays
the ‘object
detection’
scene

App displays
the ‘object
detection’
scene

Evidence:

230

Object Detection scene is loaded when the user selects the button from the home screen, displaying the following UI and scene layout

4 Main menu should
allow the user to
navigate to ‘settings’
scene

Succcess criteria points
#2, #5 and #11

(User interface design)

(Home screen)

(Ease of use)

Testing the main
menu's navigation to
the ‘settings' scene
is essential for
ensuring users can
access core features
seamlessly,
improving usability
and engagement
with the application.

Press ‘settings’
button in home
screen

Valid App displays
the ‘settings’
scene

App displays
the ‘settings’
scene

Evidence:

The Settings scene is loaded when the user selects the button from the home screen, displaying the following UI and scene layout

231

5 Camera view appears
when in the ‘emotion
detection’ scene

Success criteria points
#1

(Camera functionality
when user opens app)

Verifying that the
camera view appears
in the 'emotion
detection' scene is
vital for enabling
users to capture
images in real-time,
which is
fundamental to the
functionality and
user interaction with
the application.

Start the
‘emotion
detection’ scene

Valid App displays
the output of
the camera

App displays
the output of
the camera

Evidence:

When loaded into the emotion detection scene, the camera view is seen perfectly, in high resolution.

6 Camera functionality
within the 'object
detection' scene

Success criteria points
#1, #4

(Camera functionality
when user opens app)

(Object detection)

Verifying camera
functionality and
integration within
the object detection
scene to ensure that
the app can
effectively use the
camera to identify
and categorise
objects in real-time,
a core feature that
must perform
reliably for the app's
intended purpose.

Start the ‘object
detection’ scene

Valid App displays
the output of
the camera

App displays
the output of
the camera

Evidence:

232

When loaded into the emotion detection scene, the camera view is seen perfectly, in high resolution, however the FPS is very low (top right), due to
the massive amount of processing needed to be done at a high resolution.

When I reduce the resolution of the camera, the FPS more than doubles and the memory more than halves, which is critical to smooth operation of
my application.

7 Display of facial
recognition feature in
the 'emotion
detection' scene

Success criteria points
#1, #3, #6

Demonstrating the
display and
functionality of the
facial recognition
feature in the
emotion detection
scene to ensure it

Start the
‘emotion
detection’ scene
and point
camera at
someone’s face.

Valid App displays a
bounding box
around faces
and prints the
detected
emotion close
the them.

App displays a
bounding box
around faces
and prints the
detected
emotion close
the them.

233

(Camera functionality
when user opens app)

(Identification of
people in camera's
view/facial
recognition)

(Mood recognition
based on facial
expressions)

operates correctly
within this context,
accurately
identifying and
analysing facial
expressions for
mood assessment.

Evidence:

234

Different facial expressions are recognised and displayed on screen

8 Objects listed in the
'object detection'
scene

Success criteria points
#4

(Object detection)

Turn on an test the
object detection
scene to verify that
the feature works
seamlessly,
enhancing the
educational and
accessibility aspects
of the app.

Press ‘object
detection’
button on
homescreen

Valid Object
detection
scene loads
and displays
object names
besides their
bounding
boxes.

Object
detection
scene loads
and displays
object names
besides their
bounding
boxes.

Evidence:

Different objects are displayed with their names and confidence rating besides the name

235

9 Responsiveness and
fluidity of the live
camera feed

Success criteria points
#1, #9

(Camera functionality
when user opens app)

(Responsiveness -
20fps consistent feed)

Assessing the
responsiveness and
fluidity of the live
camera feed for
real-time interaction
to ensure the
application can
handle streaming
video at a consistent
frame rate, critical
for a smooth and
engaging user
experience in
features like live
emotion detection
or object
recognition.

Starts either the
‘emotion
detection’ or
‘object
detection’
scene, as both
use the same
logic for the live
camera feed

Valid Camera is
fluid and
responsive
~20 fps

Camera is fluid
and responsive
~20 fps

Evidence:

When maximising the camera resolution, the
application runs at approx 10-15fps which is less than
my target 20fps. I found through testing that if I
reduce the camera quality, I can acheive between
20-30fps, providing a far smoother experience, but I
also found that this reduces the accuracy in
expression detection and makes application quote
unattractive due to the contrast in resolution between
UI and camera.

10 Accuracy of facial
expression analysis for
mood recognition

Validating the
accuracy of facial
expression analysis
for mood

Start ‘emotion
detection’ scene
and point
camera at

Valid ‘Mood’ text
updates in
real time and
accurately

‘Mood’ text
updates in real
time and
accurately

236

Success criteria points
#3, #6, #10

(Identification of
people in camera's
view/facial
recognition)

(Mood recognition
based on facial
expressions)

(Accuracy)

recognition to
ensure the
technology correctly
interprets a wide
range of human
emotions, pivotal for
applications relying
on emotional
intelligence for
interaction or
feedback.

someone
displaying
different moods

detects a
person’s
emotion

detects a
person’s
emotion

Evidence:

These 2 images were taken split seconds apart, displaying the real-time change in emotion detection, immediately switching from ‘neutral’ to
‘happy’

11 User interface
intuitiveness and
simplicity

Ensuring the user
interface is intuitive
and simple,
facilitating ease of

Start the
application and
look at the UI
elements on

Valid UI elements
appear on
screen. The UI
elements

UI elements
appear on
screen. The UI
elements

237

Success criteria points
#2, #11

(User interface design)

(Ease of use)

use for a wide
demographic of
users, including
those who may not
be tech-savvy, to
reduce the learning
curve and enhance
the overall user
engagement with
the app.

screen should be
intuitive and
simple to
follow from
the point of
view of
someone who
may not be
confident
using tech.

should be
intuitive and
simple to
follow from the
point of view of
someone who
may not be
confident using
tech.

Evidence:

Home screen buttons

Image captioning button list

Face count popup

Generated image caption

According to my stakeholders and general feedback, the UI and feel of the project seems to be intuitive and simple to follow, providing the user with
a pleasant experience, allowing many different demographics to enjoy the app as they please, without confusion.

12 Customization of
text-to-speech settings
in the 'settings' scene

Success criteria points
#7, #12

(Text-to-speech output
for processed
attributes)

(Variable
text-to-speech voice
pitch/volume/speed)

Customising
text-to-speech
settings in the
'settings' scene to
validate the range of
personalisation
options available to
users, ensuring they
can adjust voice
pitch, volume, and
speed to suit their
preferences and
needs, enhancing
accessibility and user
experience.

Vary the sliders
and voice
carousel in the
settings page
until preferred
TTS voice is as
desired

Valid User is able to
change the
voice, volume,
pitch and
speed of TTS
speech.

User is able to
change the
voice, volume,
pitch and
speed of TTS
speech.

238

Evidence:

Although the UI for this page may not follow a similar theme to the rest of the project, the functionality remains perfect. The user is able to adjust
the TTS voice as they please.

13 Object detection
accuracy and
performance

Success criteria points
#4, #10

(Object detection)

(Accuracy)

Checking the
accuracy and
performance of
object detection
under a variety of
conditions to
validate the
technology's ability
to recognise and
categorise objects
reliably, which is
central to the app's
functionality and
user engagement.

Turn on ‘object
detection’ scene
and evaluate
performance
when pointing
at many objects
in different
environments

Valid Object
detection
should be
accurate and
remain highly
responsive,
even when
many objects
are in view

Object
detection
drastically
slows down
when many
objects are in
view

239

Evidence:

Low resolution object detection (10-15fps), (300-500MB memory)
- This project aims to be aesthetically pleasing and seamless. Having a low resolution output defeats this purpose

High resolution object detection (5-8fps), (500-800MB memory)
- Although much better to work with, providing higher accuracy and nicer to look at, using a higher resolution for object detection is highly

CPU intensive, causing the phone to dramatically heat up and slow down. FPS is low and memory usage is very high.

14 Responsiveness of the
main menu and
navigation elements

Success criteria points
#2, #9, #11

Testing the
responsiveness of
the main menu and
navigation elements
to ensure that users
can quickly and

Press different
buttons and
evaluate the
response time
and loading
time of different

Valid Application
should
respond to
user inputs
quickly and
with minimal

Application
responds to
user inputs
quickly and
with minimal
delay

240

(User interface design)

(Responsiveness -
20fps consistent feed)

(Ease of use)

easily access
different parts of the
application without
frustration, critical
for usability and user
satisfaction.

scenes and
processing.

delay

Evidence:
Screencast

15 Evaluation of mood
recognition under
various lighting
conditions

Success criteria points
#6, #10

(Mood recognition
based on facial
expressions)

(Accuracy)

Evaluating the
accuracy of mood
recognition under
various lighting
conditions to ensure
the technology is
versatile and reliable
in different
environments,
essential for a
feature that relies on
visual cues for
emotion detection.

Attempt to
identify
different moods
in low light,
normal light,
and very bright
light. Evaluate if
the AI is able to
distinguish
between moods
such as
happy/sad/angr
y

Boundary In low light,
emotion
recognition
may fail or
output
incorrect
emotions due
to a lack of
clarity in the
image

In low light,
emotion
recognition
may fail or
output
incorrect
emotions due
to a lack of
clarity in the
image

Evidence:

Low lighting (attempts ‘Happy’) (success)

Low lighting (attempts ‘Sad’) (success)

241

Low lighting (attempts ‘Neutral’) (success)

Low lighting (attempts ‘Surprised’) (success)

Normal lighting (attempts ‘Happy’) (success)

Normal lighting (attempts ‘Sad’) (success)

242

Normal lighting (attempts ‘Neutral’) (success)

Normal lighting (attempts ‘Surprised’) (success)

16 Ensuring app stability
and performance
during extended use

Success criteria points
#9, #11

(Responsiveness -
20fps consistent feed)

(Ease of use)

Monitoring the
application's stability
and performance
during extended use
to identify any
potential memory
leaks, slowdowns, or
crashes that could
detract from the
user experience,
aiming for
robustness and
reliability over time.

Run the
application for a
long time,
preferably over
10 minutes,
with debugging
information on
screen,
monitoring
device
temperature,
memory usage
and battery
usage.

Boundary Application
should
manage
resources
efficiently,
without any
memory leaks
or
bottlenecks.

iPhone gets hot
after approx.
2-4 mins of
usage. Battery
is drained
quickly. High
memory
consumption

243

Evidence:

Normal useage in emotion detection mode (no captioning/object detection)

After using the application in emotion detection mode for about 2-3 minutes, as seen by the device sensors above, the device temperature is high,
RAM usage is extremely high, and the battery, with 50% remaining is estimating to only last another 33 minutes, when usually this would last at
least 1-2 hours.

This app seems to be consuming large amounts of power. This could be since all the AI processing for emotion detection and object detection are
done on the device itself. It could also be the constant pinging to Google’s server, ensuring internet connectivity. There should be a more intuitive
way to detect internet connectivity than simply pinging an IP address.

17 Accuracy of text
captions generated for
captured images

Success criteria points
#8, #10

Assessing the
accuracy of text
captions generated
for captured images
to ensure they are
contextually relevant

Take a wide
variety of
different images
in various
environments,
evaluating the

Valid Captions
should remain
fairly accurate,
describing a
wide range of
given

Captions are
fairly accurate,
describing a
wide range of
given
scenarios.

244

(Image capture and
captioning)

(Accuracy)

and precise,
enhancing the value
of the app's image
recognition and
captioning
capabilities for
educational,
accessibility, or
entertainment
purposes.

response and
accuracy of the
captions

scenarios.

Evidence:

Caption states ‘man holding up a can of red bull energy’

Caption states ‘there is a laptop computer sitting on a desk with a monitor’

Caption states ‘someone is working on a laptop in the dark with a clock on the screen’

245

18 User experience and
interface consistency
across different
devices

Success criteria points
#2, #11

(User interface design)

(Ease of use)

Verifying the user
experience and
interface consistency
across different
devices, ensuring
that the application
provides a seamless
and uniform
experience
regardless of screen
size or resolution,
catering to a wide
range of users.

Build and test
on a variety of
different
iPhones with
different
processing
power and
resolutions,
evaluating the
UI and scaling
for each device.
(e.g iPhone 7,
iPhone 11,
iPhone 5)

Valid Application UI
should scale
appropriately
depending on
size and
resolution of
device.

Different
devices may
have parts of
the UI cut off
and different
resolutions
output UI
incorrectly

Evidence:

iPhone 12 simulator (UI normal)

iPhone SE simulator (faces detected UI box has no left padding from screen)

246

iPad mini 4 simulator (faces detected UI box cut off completely)

19 Functionality and
accuracy of the facial
recognition feature in
crowded scenes

Success criteria points
#3, #10

(Identification of
people in camera's
view/facial
recognition)

(Accuracy)

Testing the
functionality and
accuracy of the facial
recognition feature
in crowded scenes to
evaluate its ability to
distinguish and
analyse multiple
faces
simultaneously,
crucial for real-world
applicability and
user trust.

Prepare an
image of a large
crowd with
visible faces and
asses the
functionality
when the AI is
given large
amounts of data

Boundary AI should be
able to
recognise the
majority of
the faces in
the image,
however may
reach its limit
and only
detect up to a
specific
amount.

App freezes
and slows
down,
averaging 1
frame every 5
seconds

Evidence:

I created the following collage of 55 photos of myself in order to test the system against a large crowd of people. I loaded this image onto a large
monitor and pointed my phone at it and the results are seen afterwards:

After this image was taken, the app froze and there was no response, which prompted me to restart it. Although there were only 55 faces on the
collage, the algorithm detected 63 and placed multiple bounding boxes for 1 face for a number of faces. Furthermore, the primary emotion detected
was a mixture of sad, neutral and happy, even though the images are all identical

247

I tried this again, but I got closer to the monitor so that the features could be extracted easier and found that all of the faces were detected as
‘happy’

Although the graphics debug box states that the FPS is 5.22 and 6.39 for the above images, in reality, the image on screen updated once every 4-5
seconds

20 Evaluation of app's
adaptability to
different screen sizes
and resolutions

Success criteria points
#2, #11

(User interface design)

(Ease of use)

Assessing the app's
adaptability to
various screen sizes
and resolutions
ensures a consistent
and optimal user
experience across
different devices.

Build and test
on a variety of
different
iPhones with
different sizes
and resolutions.
(e.g iPhone 7,
iPhone 11,
iPhone 5)

Valid Application
should scale
appropriately
depending on
size and
resolution of
device.

Different
devices may
have parts of
the camera
output and UI
cut off and
different
resolutions
output UI and
captions
incorrectly

Evidence:

See test 18

21 Testing the app's
performance and

Verifying the app's
functionality without

Turn off device
WiFi and

Erroneous
and Valid

Image
captioning

Image
captioning

248

functionality without
internet connectivity

Success criteria points
#1, #11

(Camera functionality
when user opens app)

(Ease of use)

internet connectivity
ensures critical
features remain
accessible offline,
enhancing usability
and reliability.

evaluate
useability and
features. In
particular,
ensure the
image
captioning is
turned off

button
disappears
and remaining
features work
perfectly.

button
disappears and
remaining
features work
perfectly.

Evidence:

WiFi on (camera button is active, ‘Connected’ is printed in the console)

WiFi off (camera button disappears, ‘not connected’ printed in console)

249

22 Testing voice pitch
adjustment in
text-to-speech for user
personalization

Success criteria points
#7, #12

(Text-to-speech output
for processed
attributes)

(Variable
text-to-speech voice
pitch/volume/speed)

Assessing voice pitch
adjustment in
text-to-speech
validates
personalization
features.

In the settings
page, adjust the
TTS slider, type
in sample text
and press ‘test’
to hear the
audio.

Valid Users can
tailor audio
outputs to
their
preferences
and test this.

Users can tailor
audio outputs
to their
preferences
and test this.

Evidence:

screencast

23 Responsiveness and
effectiveness of the
user interface during
peak processing tasks

Success criteria points
#2, #9, #11

(User interface design)

(Responsiveness -
20fps consistent feed)

(Ease of use)

Evaluating the UI's
responsiveness and
effectiveness during
peak processing
tasks ensures the
application remains
user-friendly and
efficient under
heavy load
conditions.

Within the
object
detection, or
emotion
detection script,
include many
faces/objects
which creates
many bounding
boxes and
evaluate the
responsiveness.

Boundary During peak
processing
tasks, the app
should slow
down and
reduce in
responsivenes
s due to a
bottleneck in
system
resources

During peak
processing
tasks,app
severely slows
down,
increases
device
temperature
and
occasionally
crashes due to
high memory
useage

Evidence:

See test 19

24 Test the text-to-speech
feature with the
maximum and
minimum allowed
pitch, volume, and
speed settings.

Success criteria points:
#7, #12

(Text-to-speech output
for processed
attributes)

(Variable
text-to-speech voice
pitch/volume/speed)

Evaluate the limits of
text-to-speech
customization
settings to ensure
that extreme values
do not cause
unintelligibility or
application errors.

Within the
settings page,
turn the slider
to the maximum
and minimum
value, then test
the audio.

Boundary Audio should
be clear and
easy to
understand, at
an acceptable
volume.

Audio clear and
easy to
understand, at
an acceptable
volume.

Evidence:

screencast

250

Extra Tests (Post Development Testing)
These are some extra tests that I have included after development, that were not included in the

original testing plan

Test
No.

Aspect being
tested/Link to success
criteria

Justification Importance? How to perform
test

Type of test
(valid,
invalid,
boundary)

Expected
result

Actual result Success?

25 Flip Camera button
works as expected

Succcess criteria points
#11

(Ease of use)

Being able to use the
front camera in this
project is important
as it allows users to
caption and take
pictures with
friends, and perhaps
look at themselves,
giving this app a
sense of playfulness
and a greater
audience.

Press ‘flip
camera’ button

Valid Camera
switches from
main back
camera to
front camera

Camera
switches from
main back
camera to front
camera

Evidence:

Front camera working as expected in high resolution.

26 ‘Clear Caption’ clears
the screen of any
caption

Succcess criteria points
#11

(Ease of use)

Being able to clear
the caption off the
screen allows
greater accessibility
to the user as they
are able to see the
full screen without
any distractions.

Press ‘clear
captions’ button

Valid Caption
disappears
and the top of
the screen
becomes clear

Caption
disappears and
the top of the
screen
becomes clear

251

Evidence:

screencast

27 Tutorial/Instructions
on how to use the app,
detailing the functions
of each button etc.

Success criteria points
#11

(Ease of use)

Having a tutorial is
quite useful as many
people may not
understand what the
button symbols
mean and could be
afraid of testing
them out due to the
lack of
communication. A
tutorial explaining
what the app does
and the
corresponding
buttons will help
iron out any
confusion

Intial startup. Valid Text-based/vid
eo-based
tutorial pops
up on screen,
prompting the
user to read
and
understand
what each
button/functi
onality does

Due to time
constraints, I
was unable to
implement this
feature into the
project

Evidence:

Due to time constraints, I was unable to implement this feature into the project

28 Auto-Rotate function
works, allowing the
user to use the app in
landscape or portrait
whenever they please

Succcess criteria points
#11

(Ease of use)

Having the choice of
how to use the app
provides greater
flexibility to the user
and thus, improves
their overall
experience. This is
why this feature is
quite important

Rotate phone Valid Camera and
outputs rotate
with the
iPhone,
providing a
seamless
change.

Due to time
constraints and
various
unavoidable
bugs when
trying to fix
this, I was
unable to
implement this
feature into the
project

Evidence:

Due to time constraints and various bugs when trying to fix this, I was unable to implement this feature into the project and as a result, have locked
the app to stay in landscape mode where it works perfectly fine.

29 Caption Loading icon

Succcess criteria points
#2

(User interface design)

When captioning an
image, it can
occasionally take a
long time. As a
result, having an
animated icon to
indicate that some
sort of processing is
being taken place
saves the user from
confusion.

Press ‘caption’
button

Valid When sending
a screenshot
to be
captioned, a
spinning cog
appears,
indicating that
a task is being
processed.

When sending
a screenshot to
be captioned, a
spinning cog
appears,
indicating that
a task is being
processed.

Evidence:

White spinning cog appears when captioning an image and the other UI elements disappear in order to provide ‘abstraction’ to the captioning AI

252

After a caption is returned, all the UI elements reappear and the cog disappears

253

Robustness

In evaluating the robustness of my AI application, which encompasses face detection,
emotion recognition, and image captioning functionalities, a comprehensive series of tests
were conducted to ensure its operational integrity across a wide array of scenarios. Initially,
the app was subjected to a diverse testing environment involving individuals exhibiting a
range of emotions—happiness, sadness, neutrality, anger, surprise, and disgust—in varying
group sizes, from solitary figures to gatherings of up to 15 people. Although the app
demonstrated commendable performance in recognizing and processing emotions under
these conditions, a notable decline in response time was observed as the number of faces
increased, with the system showing signs of strain beyond ten to fifteen faces, occasionally
leading to crashes. This highlighted a potential limitation in handling large groups, though it
remains efficient for the majority of practical applications.

To ensure the app's versatility, it was also tested under varying lighting conditions, from dim
to brightly lit environments. The system adeptly handled these variations, maintaining high
accuracy across all tested emotional states, underscoring its robustness in face and emotion
detection tasks.

The image captioning feature, powered by a pre-trained model on the expansive COCO
dataset, was anticipated to offer significant accuracy due to its extensive training
background. While specific tests for this feature were not detailed, the reliance on a robust
dataset suggests confidence in its capability to generate relevant descriptions across a wide
range of scenes and objects.

During operation, the app utilizes an iPhone camera to process images in real time, thus
bypassing issues related to invalid data inputs such as non-image files or corrupted images.
However, under high-load conditions, the app exhibited performance challenges, attributed
to the intensive processing demands placed on the device. This aspect reveals a significant
area for improvement, possibly suggesting a shift towards server-based processing to
alleviate the computational load on the device and enhance the overall user experience.

In summary, the robustness evaluation of my AI app reveals a system capable of performing
effectively under a variety of conditions with limitations primarily in handling large groups and
under intense processing demands. Future enhancements would focus on optimizing
performance under high-load scenarios, possibly through server-side processing, and
refining face detection capabilities to better manage scenarios involving numerous
individuals, thereby ensuring a seamless and efficient user experience across all
functionalities.

254

Useability Testing

Menu and UI
The following questions relate to the menus and UI within my app that the user will interact
with to access different parts of the program such as creating a ‘object detection’, or
‘emotion detection’, accessing the settings page etc.

Is the homes screen layout clear and easy to follow?

Since the user sees the main screen of the app initially, it must be easy to navigate so that
the individual does not become frustrated or puzzled by it. With 100% of respondents
indicating "yes," the main menu is in fact straightforward, according to the comments I
received on my Google Form. Therefore, if I had more time, I wouldn't need to alter the main
menu's layout.

Are the buttons clear and easy to understand when navigating the app?

The clarity and ease of use of an application's interactive elements are vital for a seamless
user experience. In the feedback gathered, 60% of respondents affirmed that the buttons
within the app are clear and easy to understand, suggesting a majority positive experience.
However, a notable 40% indicated the opposite, which points to a potential area for
improvement. While the results are predominantly positive, the dissenting opinions highlight
the necessity for a closer evaluation of the app's button design and labels. To ensure a more
intuitive navigation for all users, it may be worthwhile to investigate the specific concerns of
those who responded negatively and consider adjustments that could enhance the app's
overall usability. It is essential to strive for a design that accommodates the needs and
preferences of a wider user base, particularly in elements as fundamental as navigation
buttons.

255

Is the text easy to read throughout the application?

Text legibility is a fundamental component of application design, impacting user engagement
and overall satisfaction. The feedback received unanimously indicates that the text within the
app is easy to read, with 100% of the respondents giving a positive "yes" response. This
suggests that the current font size, style, and contrast are well-suited to the users' needs,
facilitating a smooth and accessible reading experience across the app. This strong
consensus among the limited pool of respondents is encouraging; however, it's also
important to remain open to further feedback as the user base grows. Continuous monitoring
and testing with a more diverse group of users can ensure that the text remains readable for
new users with varying visual preferences and needs.

Are the menu and UI designs consistent with the rest of the program?

Consistency in UI design is key to providing a seamless user experience. According to the
feedback, a majority of 60% of users reported that the menu and UI designs were consistent
across the app. However, 40% of respondents perceived a lack of consistency, which could
be attributed to the use of a pre-built settings page that does not entirely match the
custom-designed UI of the rest of the application. This deviation in design quality is
acknowledged and stems from time constraints during the development process. Moving
forward, it is recognized that investing time in redesigning the settings page to match the
aesthetic and functional quality of the custom UI would likely enhance user satisfaction and
create a fully cohesive experience throughout the app. Addressing this inconsistency will be
a priority to ensure that all elements of the app meet the high standards set by the majority
of the custom user interface.

256

Are the buttons and inputs responsive?

Responsiveness is a crucial factor in the usability of any application, directly affecting the
efficiency and satisfaction of the user experience. The feedback obtained from the
stakeholders reveals a unanimous agreement with 100% of the respondents indicating that
the buttons and inputs are responsive. This outcome suggests that the application performs
well in terms of interaction speed and feedback, which is essential for users who expect
immediate and reliable responses to their actions within the app. The positive feedback on
responsiveness indicates that, technically, the app's interactive elements are optimized for
user engagement. It's important to maintain these performance standards as the app scales
and to continue to gather user feedback to ensure responsiveness remains consistent
across various devices and usage scenarios.

Do you have any other suggestions for the UI and menus for the application?

User feedback is invaluable for refining an application's UI and enhancing its functionality.
From the two responses provided, we can discern a common theme around the need for
clarity and depth in design.

The first response critiques the settings page for its basic appearance and lack of design
complexity, which echoes earlier feedback and suggests that a redesign could be beneficial
to align with the more polished aspects of the application.

The second response requests additional guidance for users, indicating a gap in the app's
intuitiveness. Specifically, it points to the need for a tutorial or guide that explains the
function of each button, such as the 'arrows' for flipping the camera and the 'camera' for
captioning the image. This indicates that while the design may be visually pleasing, its
functionality is not immediately obvious to all users.

Addressing these concerns by enhancing the settings page design and implementing a user
guide or tutorial would likely improve user experience. It would provide a more cohesive

257

design language throughout the app and empower users with the knowledge to fully utilize
the app’s features from the outset.

App Functionality and Features
The following questions are related to the functionality and the features of the application,
ranging from the settings page functionality, to the image captioning

Was the emotion detection accurate?

In the realm of app features, emotion detection accuracy is crucial for user trust and
engagement. The feedback provided by users indicates that 80% found the emotion
detection feature to be accurate enough, reflecting a high level of satisfaction with this
functionality. However, the remaining 20% expressed that the accuracy was not sufficient,
suggesting there is room for improvement in the algorithm or its implementation. While the
positive response from the majority is promising, the critical feedback from a minority is
important to consider for future updates. It might be beneficial to investigate the
circumstances or types of interactions where the emotion detection falls short. Enhancing
this feature based on specific user experiences could lead to a more robust and reliable
emotion detection system, further increasing user satisfaction and broadening the app's
appeal.

258

Was the object detection scene accurate in its predictions?

Feature accuracy is crucial for applications relying on artificial intelligence, like object and
emotion detection. For the object detection feature, the feedback indicates that 60% of
respondents find the predictions accurate. This suggests that while the feature generally
performs well, there is room for improvement, as a notable 40% of users did not find the
object detection accurate enough.

Addressing the concerns of the minority could involve refining the algorithms or providing
better training data to improve accuracy. It’s also worthwhile to consider user expectations
and experiences on a deeper level to understand the specific inaccuracies they’re
encountering. This might not only lead to technical enhancements but also adjustments in
how the app sets expectations for its performance. It's imperative to aim for as close to
100% accuracy as possible to enhance user dependency on the application.

When captioning images, did you come across any inaccurate or concerning captions
generated?

The accuracy of caption generation in image-related applications is significant for user
engagement. The feedback received shows that 60% of users did not encounter any
inaccuracies or concerns with the captions generated by the app, which is a positive
indicator of the system's reliability. However, 40% did experience issues with the generated
captions, suggesting that there are certain discrepancies between the app’s output and user
expectations or reality.

This feedback highlights an area that could benefit from further development. Enhancing the
captioning algorithm, possibly by expanding the training dataset or incorporating more
sophisticated natural language processing techniques, might improve the accuracy.
Additionally, implementing a feature for users to provide immediate feedback on caption

259

accuracy could help in quickly identifying and rectifying specific issues. This approach would
not only improve the app's performance but also engage users in the refinement process,
potentially increasing satisfaction with subsequent updates.

Do you think that the object detection scene was a necessary part of the app?

Reflecting on the functionality of the object detection scene within the app, the user feedback
indicates a significant viewpoint; 80% of respondents do not consider it a necessary element
of the application. This suggests that for the vast majority, the object detection feature may
not contribute to their primary use case or enhance their user experience in a meaningful
way. Conversely, the remaining 20% do see its value, hinting at specific use cases or
preferences where this feature plays a vital role. Moving forward, it would be prudent to
delve deeper into understanding the needs and expectations of the user base. This could
involve re-evaluating the prominence given to object detection in the user interface or
possibly redefining its role within the app’s ecosystem, ensuring that the app's features are
closely aligned with the needs of its users.

Was the settings page easy to use and follow?

Navigability and clarity on the settings page are essential for a positive user experience. The
feedback indicates that the majority, 80%, found the settings page easy to use and follow.
This is a strong endorsement of the page's current layout and functionality. However, there is
still a notable minority, 20%, that did not find the settings page user-friendly. This suggests
that while the settings page functions well for most, there could be specific elements that are
not as intuitive or clear as they could be for all users. It might be worthwhile to investigate
these particular cases to understand the challenges faced by the minority. Improving the
settings page by addressing the issues highlighted by the 20% could lead to enhanced
usability and a more universally positive response from the user base.

260

Did the text-to-speech functionality work as expected, was it clear and easy to understand?

The text-to-speech feature of the app appears to meet users' expectations splendidly, with all
respondents (100%) confirming that it worked as expected and was clear and easy to
understand. This unanimous feedback underscores the effectiveness and user-friendliness
of the text-to-speech functionality, suggesting it's a well-implemented aspect of the
application. A consistent and reliable performance in such features is crucial as it can greatly
enhance the accessibility of the app, allowing a broader audience to benefit from its use. It is
encouraging to see such positive feedback, and maintaining this level of functionality will be
important as the app continues to evolve.

Did you find the TTS customization page useful?

The Text-to-Speech (TTS) customization page is considered useful by the majority of
respondents, with 80% affirming its usefulness. This reflects a strong approval for the
customization features provided, suggesting that users appreciate the ability to personalize
their TTS experience. Tailoring the speech output to individual preferences can greatly
enhance user satisfaction, as it allows for adjustments in voice, speed, and other parameters
to match user needs.

The remaining 20% who did not find the customization page useful might indicate specific
areas for improvement or perhaps a need for more guidance on how to effectively use the
customization options. It could also point to different expectations about what 'customization'
should entail. Understanding the needs and preferences of this minority group could provide
valuable insights into how the customization page can be improved or made more intuitive.
Ensuring that the TTS customization options are both accessible and comprehensible to all
users will contribute to a more inclusive app experience.

261

Do you have any other suggestions for the functionality and features of the app?

\

User feedback is crucial for continuous improvement, and these three responses offer
actionable suggestions for the app’s functionality and features:

Performance issues are noted during heavy usage within the object detection scene. Users
have experienced slowdowns when the screen is populated with multiple items. This
feedback suggests that optimizing the performance, possibly by streamlining the object
detection processing or improving the app's resource management, could enhance the user
experience.

A preference for portrait mode indicates a desire for more flexible user interaction. This user
finds holding their phone in an upright position and pressing buttons more natural, which
suggests an opportunity to improve the app's orientation options, potentially making it more
accessible and comfortable for a broader user base.

While the text-to-speech feature is deemed understandable, at least one user feels that the
customization of this feature adds unnecessary complexity. This insight points towards a
need for balancing advanced options with maintaining simplicity. It could be beneficial to
consider a more simplified version of the TTS customization for users who prefer a more
straightforward experience, perhaps offering basic and advanced settings.

Taking these suggestions into account could lead to a more refined, user-friendly app,
catering to the diverse needs and preferences of its users.

262

Review on useability
Our comprehensive analysis of user feedback presents a nuanced view of the app's
usability. The stakeholders' responses offer valuable insights, reflecting a commendably high
level of satisfaction with several core aspects, alongside constructive criticism in specific
areas. Notably, the unanimous approval of the text readability and the responsiveness of
buttons and inputs underscores the app’s proficiency in fundamental usability metrics. Such
positive responses resonate with the aim to deliver a user-friendly experience, which is
further corroborated by the majority finding the settings page navigable and the
text-to-speech functionality meeting expectations.

However, this positive sentiment is tempered by concerns over the consistency and intuitive
nature of the UI, particularly regarding the settings page, which was noted to lack the finesse
of the app's custom-designed elements. Additionally, although the object detection feature
was technologically sound, a significant 80% did not perceive it as necessary, highlighting a
possible misalignment with user needs. The TTS customization page, while deemed useful
by the majority, also faced scrutiny from users who favored simplicity over complex
personalization options.

A recurring theme of desiring simplicity and ease of use was also evident, with suggestions
for portrait mode capabilities suggesting that ergonomic considerations could further refine
the user experience. Users expressed the need for optimizations, particularly within the
object detection scene, to maintain app performance even when dealing with high on-screen
object density.

In synthesizing the responses, it is clear that while the app excels in accessibility and clarity
of content, it should strive for a balance between advanced features and maintaining
simplicity. To enhance usability, the next steps would include streamlining the settings
interface, providing user guidance for unfamiliar features, and ensuring that every aspect of
the app, especially additional features like object detection and TTS customization, aligns
seamlessly with user expectations. The app’s strong foundation sets the stage for these
targeted improvements to bolster usability further, ensuring the app remains both functional
and enjoyable for all users.

263

Evaluating Each Success Criteria

Importance:
RED - critical for application functionality
ORANGE - Moderately important for app functionality
GREEN - Additional, yet unnecessary features for overall app aim

Completion:
RED - Incomplete
ORANGE - Partially complete
GREEN - Completed

ID Importance Completion Criteria Evidence Final Evaluation

1 Camera
functionality
when user opens
app

Tests 5, 6, 7, 9, 21

(Post development
Testing)

This was perhaps the most critical
part of the project and undoubtedly
one of the most complex parts also.
This criterion included me learning
how to communicate with the
device camera through Unity and
converting it to a mappable texture,
which is then copied onto a
gameObject renderer.

This made up the majority of the
time spent during iteration 1.

This section was fully completed,
with the ability to switch cameras
seamlessly for both the object
desdtection and emotion detection.

2 User interface
design

Tests 1, 2, 3, 4, 11,
14, 18, 20, 23, 29

(Post development
Testing)

Although most of the UI elements
were completed. Parts of the app
were not consistent with the rest of
the theme, in particular, the settings
page. Furthermore, I feel as though
The UI on the homescreen was
cleaner and more aesthetically
pleasing than the UI in the main
‘emotion detection’ and ‘object
detection’ scenes. Perhaps if I had
time I would work on this further
and tailor this to look more
professional and interlinked with
the rest of the app.

3 Identification of
people in
camera's

Tests 7, 10, 19

(Post development

Being able to identify people and
faces in Unity proved to be a
challenge. During my research

264

view/facial
recognition

Testing) phase, I was under the impression
that I was simply able to import an
AI model into Unity’s built-in
barracuda AI processing plugin,
however as it turned out, this was
close to impossible in the given
time constraints, which resulted in
me researching and selecting a
separate plugin that has many
pre-trained and loaded models with
their corresponding scripts. The
most challenging part was perhaps
being able to communicate these
pre-built scripts with the camera
texture that I had rendered from
earlier.

In conclusion, this project-critical
section of the application was fully
complete and exceed my
expectations in it’s accuracy and
responsiveness when processing
locally on a mobile phone with
relatively low processing power.

4 Object detection Tests 6, 8, 13

(Post development
Testing)

Although this section was entirely
optional, I came across an object
detection pre-trained model
alongside the facial recognition
model and thought to include an
additional feature, which may not
be useful to many, but some users
may find amusement and curiosity
in the power of artificial intelligence
being able to identify every day
objects. Since I already
programmed the logic for the
pre-built OpenAI scripts to
communicate with my camera
output scripts, this criterion was
much more simple than some of
the other ones, which allowed me
to fully complete this section of the
app, despite its lack of importance.

5 Home screen Test 1, 2, 3, 4

(Post development
Testing)

My app is entirely based on
accessibility and open useability.
Every user should immediately be
greeted with a pleasant home
screen, providing them with
valuable direction and insight into
the general app. Although this
wasn’t difficult to program. The UI
for the home screen set the layout

265

for the rest of the app, which made
the design for this, including the
slogan, quite time consuming yet
nonetheless, I was able to fully
complete it with complete positive
feedback.

6 Mood recognition
based on facial
expressions

Test 7, 10, 15

(Post development
Testing)

Mood recognition is a critical
aspect of my project, providing the
backbone for many of the other
features. This was fully completed
as it had to be perfect.

The mood recognition received
overwhelmingly positive feedback
and even throughout testing, I was
very impressed with its accuracy,
even in very different and complex
environments.

7 Text-to-speech
output for
processed
attributes

screencast I wanted to include Text-To-Speech
as an extra feature that
demonstrated accessibility, which is
what this project aims to bring for
everyone.

Despite what I had originally
thought, the text-to-speech was far
more difficult than I had assumed
as I had never worked with Apple’s
built in TTS kit.

This feature of the project
demanded large amounts of
research into how I could
implement this into my work.

Something that slowed me down
significantly, is that in order to test
its functionality, I was forced to
build it onto my phone each and
every time since the libraries are
not accessible on my laptop. This
was very time consuming,
especially for someone who is
learning to use this while
developing, although I was pleased
that I was able to complete this
whole optional section of my
success criteria

8 Image capture
and captioning

Test 17

(Post development

Image captioning provides this app
with another dimension through
computer vision. With image

266

Testing) captioning, people are able to
understand and simulate their
surroundings at the touch of a
button, without even needing to see
what’s around them.

I was fixated on building the image
captioning model myself, however
after weeks of development, I had
hit a roadblock and was unable to
continue, and while I was close to
giving up, I found huggingFace,
which provided me with an
alternative, although much simpler
and less rewarding method of
image captioning by using their
pre-trained models and a Python
library. However, I was determined
to include this feature in my project
so I settled for it.

If I had more time, I would have
started from scratch and learned to
train, evaluate and export my own
image captioning model, which I
can then use for server-side
processing.

9 Responsiveness
(20fps consistent
feed)

Test 9, 14, 16, 23

(Post development
Testing) and
screencast

Since my project aims to be
accessible and useable by all
smoothly and without confusion, I
wanted every aspect of this app to
run smoothly and highly
responsive, with an ideal target
framrate of 20 frames per second.

However, the pre-trained OpenAI
models for objectdetection and
facedetection could not scale well
when camera resolution increased.
As a result, the system framrate
dropped to an average of around
10fps all around. While this is still
useable and manageable, it doesn’t
provide the smooth elegant
responsiveness that I was aiming
for.

Upon further research, it was made
clear to me that Unity is not
designed for AI processing,
whether they are pre-trained or not.
If next time I want high framerate
and responsiveness, I should

267

attempt to build the iPhone app via
another engine or programming
language such as Swift.

10 Accuracy Tests 10, 13, 15, 17,
19

(Post development
Testing)

Ideally, every aspect of this app
should be highly accurate as one of
the aims is to potentially help
people who many require
assistance from visual aid and thus
I do not want to be providing
inaccurate and confusing
information as this may cause
confusion and other problems.

In order to increase accuracy, I
would need to increase the
resolution of the cameras and the
rate at which the images are sent
for processing, however this will
result in a large drop in
performance and framerate. As a
result, some sacrifices must be
made. In order to maintain
framerate, some accuracy will be
lost and vice versa, however in the
grand scheme of the overall
project, I think this criterion came
out to be relatively successful,
especially in the emotion detection
scene, when focused on 1-3
people.

11 Ease of use Tests 2, 3, 4, 11, 14,
16, 18, 20, 21, 23,
25, 26, 27, 28

(Post development
Testing)

In order to be as accessible to
everyone as possible, my app
needs to be easy to use and
understand, without confusion.

I don’t feel as though I adequately
completed this criterion. According
to some of the feedback I received
stated that some users were
confused by the buttons due to the
lack of tutorial or text.

If I had more time for this project, I
would have also included a tutorial
on the functionality of the app and
what each button’s purpose is.

12 Variable
text-to-speech
voice
pitch/volume/spe
ed

screencast Although not necessary for the
project, the I wanted to improve the
ease of access even further by
allowing the users to customise the
TTS voice however they please.

268

With the ability to change the voice,
pitch, and speaking rate, for when
the image captions are loaded.

This section was fully complete as
the TTS library that I imported for
iPhone already included the TTS
customization scene, which I used
as the settings page due to the lack
of time to work on a better, more
polished settings page.

269

Limitations and Maintenance

Limitations
In assessing the challenges encountered during the development of the application, several
limitations have surfaced that provide essential learning points for future iterations. These
limitations, categorized under specific subheadings, present opportunities for both technical
improvements and a better alignment with user expectations.

Rotation and UI challenges:
- The project faced significant rotation and scaling limitations, particularly notable in

the inconsistent behavior of UI and camera orientation. The UI elements, including
crucial features like emotion detection indicators, would often rotate appropriately
with the device but the camera feed itself would not, resulting in upside-down visuals.
Additionally, device disparity, especially with iPads, led to UI elements being cropped
out of view, indicating a need for more adaptive UI scaling. These challenges suggest
a gap in initial planning for cross-device compatibility and point towards a necessary
overhaul of the rotation management system to ensure a consistent and user-friendly
interface across all devices.

Object Detection and Power efficiency:
- Object detection emerged as the primary power-consuming process, due to the high

demands it places on the device's CPU and memory. The intensive processing of
multiple objects significantly drained the battery, leading to inefficiency compared to
other apps with similar functionalities. Acknowledging this as a first venture into AI
and camera/image processing tasks, the experience has been a substantial learning
curve. Future iterations would benefit from exploring methods to optimize object
detection, perhaps by simplifying the process or selectively processing objects to
minimize the computational load.

Network dependency for image captioning:
- The app's reliance on network speed for image captioning has resulted in variable

performance. While a fast connection could yield a caption in as little as 5-7 seconds,
a weaker signal could extend this to a full minute. During this period, the UI becomes
unresponsive, leaving the user with no option but to wait. The absence of a 'cancel
captioning' feature, due to time constraints in development, reduces user experience
by eliminating user control during this process. Implementing a cancel option would
restore agency to the user, allowing them to opt-out of prolonged waiting times and
enhancing the app's responsiveness and usability in varying network conditions.

Caption Accuracy Versus Processing Time:
- In striving for accuracy in image captioning, a variety of pre-trained models were

evaluated. The chosen model strikes a balance between accuracy and processing
time, providing reasonable results within an acceptable timeframe. More accurate
models exist, but their longer processing times were deemed impractical for the app's
purpose. The trade-off between precision and speed is a common challenge in AI
applications, and continuous testing under varying conditions—like poor lighting or

270

lower resolutions—is essential for further refinement. Future developments might
also consider incorporating user feedback mechanisms to improve captioning
algorithms based on real-world usage and performance.

Ease of access issues:
- Ease of access was compromised in the app due to the reliance on iconography

without accompanying text descriptions, leading to user confusion regarding feature
functionalities. The absence of a 'help' section or tutorial due to time constraints
exacerbated this issue, as users were left without guidance. To remedy this, future
updates could prioritize the development of an intuitive help page or an interactive
tutorial that walks users through the app’s features, thus fostering a more accessible
and user-friendly environment.

271

Maintenance
Maintenance and regular updates are essential for the continued success and reliability of
any application. For this project, a systematic approach will be adopted to ensure that the
app remains functional, efficient, and user-friendly, while adapting to evolving user needs
and technological advancements.

Feature updates and optimization:
One of the key areas of focus will be on the feature set and overall performance of the app.
This includes routine optimization of the AI algorithms to enhance speed and reduce power
consumption. Regular benchmarking against newer models and methods will be essential to
ensure that object detection and image captioning remain both accurate and efficient.
Addressing user feedback, such as the demand for portrait mode or the inclusion of a 'cancel
captioning' feature, will be prioritized to ensure the app evolves in line with user
expectations.

UI/UX Enhancements:
Feedback highlighted the need for clearer UI elements and ease of navigation. Future
updates will aim to integrate text descriptions alongside icons for better clarity, and the
development of a 'help' page or interactive tutorial is slated for the next cycle of updates.
Responsiveness across various devices and orientations will be addressed, with a focus on
improving rotation handling and UI scaling to cater to a wide range of devices, including
tablets.

Technical Maintenance:
Regular technical maintenance will include updates to ensure compatibility with the latest
operating systems and device standards. Efforts will also be made to reduce the app's power
consumption by refining the codebase for better CPU and memory management. Ensuring
scalability of the backend to handle an increasing number of requests will be crucial,
especially as the user base grows.

Content and Accessibility Updates:
To maintain the app's relevance, content such as object libraries for detection and caption
databases will be continuously updated. This ensures the app can recognize and correctly
caption the latest objects and scenes users might encounter. Additionally, accessibility
features will be enhanced to support users with different abilities, making sure the app is
inclusive and compliant with accessibility standards. This includes updates to the
text-to-speech system, and user feedback. I would also like to add haptic feedback at some
point in the future, as an optional method of communication, perhaps to indicate when a
caption is returned so that a user with visual impairments would know when to request the
caption be spoken aloud via the TTS.

272

Monitoring and Analytics:
Implementing robust monitoring and analytics will inform the maintenance strategy. By
understanding how users interact with the app and where they encounter problems, updates
can be strategically targeted to areas that will have the most significant impact on the user
experience.

In essence, the maintenance strategy for this project is to be as dynamic and user-focused
as the app itself. By continually iterating and improving upon the app’s foundation, the goal is
to maintain its standing as a helpful and dependable tool for users, adapting not only to the
technological landscape but also to the changing needs of its audience.

273

Final Evaluation

Reflecting upon the journey of this project, I am confident in considering it a commendable
success. Evaluating against the success criteria set at the project's inception, it is gratifying
to note that nearly all the intended functionalities were effectively implemented within the
project timeline. Although some criteria were scaled back due to the project's scope, the
achievements in functionality and the resultant product are aspects that instill a strong sense
of pride.

The success of the project is further substantiated by the affirmative feedback from
stakeholders. Engaging with them consistently throughout the development process,
adhering to the rapid application development methodology, proved to be beneficial. Regular
interactions yielded critical evaluation points and constructive feedback, which shaped the
iterative improvements of the application. The overall positive responses, particularly
highlighted by the user experience scores from the final usability testing, reinforce the
project's success.

The design robustness and user-centric approach have been pivotal. The application was
crafted with the end-user in mind, ensuring an intuitive user interface and a seamless user
experience. These aspects were not by chance but by design, and they underscore the
careful consideration of usability in the app's development.

In conclusion, Even though this project was successful, I think I misjudged how much time
and work it would require, which prevented me from producing the polished app I had hoped
for. The project stands as a testament to skill development, user engagement, and technical
execution. While there were challenges, such as time constraints and the ambitious nature
of the project, the overall outcome has been overwhelmingly positive. The application not
only meets the set criteria but does so in a way that affirms my dedication and the project’s
potential for future growth and refinement.

274

Appendices

Code Listing

EmotionDetectionScript.cs

275

276

277

Yolo.cs

278

279

280

sendScreenshot.cs

281

282

SceneSwitch.cs

283

Model2.py
(updated image captioning model)

284

Note
The majority of the code for this project was continuously updated and changed. In
particular, the original image captioning model was completely designed and set to be
trained by myself, although due to unforeseen circumstances, I was unable to get it to work,
as a result, a large amount of code is missing from the code listing, however it is all available
to see in the iterative developments, along with updates throughout every other script
involved.

285

Screencast
For the screencast, please visit this link (https://youtu.be/jL8sWUxPo5E)

286

https://youtu.be/jL8sWUxPo5E

